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Real-Time Algorithms for the Detection of Changes
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Abstract—As video content is responsible for more than 70%
of the global IP traffic, related resource allocation approaches,
e.g., using content caching, become increasingly important. In
this context, to avoid under-provisioning, it is important to
rapidly detect and respond to changes in content popularity
dynamics, including volatility, i.e., changes in the second order
moment of the underlying process. In this paper, we focus on the
early identification of changes in the variance of video content
popularity, which we address as a statistical change point (CP)
detection problem. Unlike changes in the mean that can be well
captured by non-parametric statistical approaches, to address
this more demanding problem, we construct a hypothesis test
that uses in the test statistic both parametric and non-parametric
approaches. In the context of parametric models, we consider lin-
ear, in the form of autoregressive moving average (ARMA), and,
nonlinear, in the form of generalized autoregressive conditional
heteroskedasticity (GARCH) processes. We propose an integrated
algorithm that combines off-line and on-line CP schemes, with the
off-line scheme used as a training (learning) phase. The algorithm
is first assessed over synthetic data; our analysis demonstrates
that non parametric and GARCH model based approaches
can better generalize and are better suited for content views
time series with unknown statistics. Finally, the non-parametric
and the GARCH based variations of our proposed integrated
algorithm are applied on real YouTube video content views time
series, to illustrate the performance of the proposed approach of
volatility change detection.

Index Terms—Content popularity dynamics detection, change
point analysis, variance change detection, volatility detection.

I. INTRODUCTION

UNDERSTANDING the popularity characteristics of on-
line content and predicting the future popularity of

individual videos are of great importance. They have direct
implications in various contexts [1], such as service design,
advertisement planning, network management [2], and so on.
As an example, an efficient content caching scheme should
be popularity-driven [3], meaning that it should incorporate
the future popularity of content into the caching decision
making. In this framework, novel cache replacement methods
that are “popularity-driven” have recently appeared, e.g., the
algorithms proposed in [4], based on learning the popularity
of content and using it to determine which content should
be retained and which should be evicted from the cache.
Other important applications include content delivery networks
(CDNs) in which “analytics-as-a-service” approaches are em-
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ployed and information centric networks (ICNs) with emphasis
on the Internet of things (IoT) [5].

Higher order moments of the underlying random process
are unarguably important for the efficient statistical char-
acterization of content popularity; in particular, “volatility”
plays a central role in capturing the underlying dynamics
of content views. As an example, in caching applications,
it has been established in [6] that a major factor greatly
impacting efficiency is related to demand volatility; this re-
flects the fact that files might not be constantly requested
following a stationary model, but rather, only be requested
once or twice and subsequently exhibit vanishing demand
in time (e.g., volatility in YouTube content). Based on these
findings, an efficient strategy for resource provisioning should
in principle consider not only conditional mean demands but
also demand fluctuations, thus avoiding under-provisioning or
over-provisioning.

To analyze the underlying statistics of content views data,
the latter are typically represented as a time series. Time series
data are sequences of measurements over time, describing
the behavior of systems. The behavior can change over time
due to external events and / or internal systematic changes in
dynamics / distribution. Success in revealing such patterns can
be translated to the ability to respond rapidly to these changes.
In this direction, there has recently been a surge of research
in the area of content popularity prediction using artificial
intelligence (AI) [7]. In this context, machine learning based
methods (e.g., deep learning) need effective feature mining
and a huge mass of labeled examples to provide successful
performance [8], [9]. In applications in which real time
content popularity monitoring is required this might become
a challenge. As an example, in [10] the authors propose an
off-line deep learning approach to detect popularity that is
subsequently integrated into the on-line caching policy in fog
radio applications; however, whenever there is an important
change in the underlying dynamics of content popularity, it
follows that a new off-line training might be required to run
the algorithm properly.

In this work, we alternatively turn our attention to
lightweight statistical procedures that fall in the general con-
text of AI (instead of deep learning specifically), in order to
operate in an on-line manner (real-time) and to keep the size
of the required set of historical data as small as possible. Our
proposed algorithm is autonomous, in the sense that all its
parameters are determined without manual intervention during
a training period; furthermore, the training period is limited
to only a few hundred data points (instead of thousands or
millions as is typical in deep learning).
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(a) (b)

Fig. 1: Simulated time series with CPs in the mean (solid
line) and the variance (dashed line) for (a) separated and (b)
simultaneous changes in the mean / variance. Horizontal lines
illustrate the mean value.

Importantly, instead of attempting to predict the evolution
of content popularity, in this work we rather focus on detecting
changes in its underlying statistics, and doing so in real-time.
To this end, we propose the use of on-line change point (CP)
analysis; to complement our work [11], [12] that focused on
the identification of changes in the mean of a time series, here,
we alternatively investigate the performance of corresponding
on-line algorithms to identify changes in the variance of a time
series using CP analysis.

In general, CP methods are either off-line or on-line. Off-
line algorithms operate retrospectively and identify CPs in a
historical dataset, a thorough study can be found in [13]. On-
line algorithms [14] monitor in real time a data sequence and
aim to detect CPs as soon as they occur. In this work, we
propose an efficient combination of an off-line and various on-
line procedures for the detection of changes in the second order
statistics of video content popularity, as soon as they occur
(real-time). The proposed detector is built upon our earlier
proposal for a real-time CP detector of mean changes in data
series, that we applied to monitor the average number of video
content [11], [12]. Albeit, the monitoring of changes in the
variance of a time series is much more challenging.

To further illustrate our motivation behind this work, we
note that an overall approach considering both mean and vari-
ance changes allows for a more efficient handling of content
popularity changes as highlighted in Fig. 1. For example, Fig.
1(a) depicts that a crucial popularity change may affect only
the variance parameter, in the specific example at the third
segment of the time series. On the other hand, Fig. 1(b),
depicts that in the case of a simultaneous change in the mean
and the variance, e.g., in the second segment of the time series,
the latter is critical to estimate the actual impact of this change.
Monitoring the variance may also be used as a measure of
uncertainty, determining the degree of fluctuation of popularity
around its expectation; for instance, compare the behaviour of
the time series in Fig. 1(b) after the first and the second CP
(second and third segments of the data series, respectively).

To identify changes in the variance, a more elaborate test
statistic is employed in the present study. With respect to [11],
[12], we further introduce novel on-line tracking mechanisms
based on autoregressive moving average (ARMA) and gener-
alized autoregressive conditional heteroskedasticity (GARCH)
models. The most important novel aspects of this paper are

listed below:
• We show that variance CP detection is important in the

context of content popularity.
• We introduce a relevant on-line detection algorithm, en-

hanced by the following two mechanisms: (a) an offline
CP detection over training data for the estimation of
the on-line test parameters; and (b) identification of the
change magnitude in the pro- and post-change variance
structure.

• Our algorithm supports three alternative on-line tests
for content popularity detection – based on ARMA and
GARCH models as well as a non-parametric approach –
covering a wide-range of time series characteristics.

• We performed experiments both on synthetic and real
time series datasets. Our results show that: (i) the
GARCH and the non-parametric approaches perform bet-
ter when the time series does not follow a linear model;
(ii) overall, these approaches can generalize better with
respect to the true alarm rates; and (iii) the non parametric
approach can identify CPs more rapidly.

In future work we intend to expand the algorithm to include
additional dimensions that can be volatility indicators, such
as the number of likes, viewer comments, content size, as
well as network parameters such as the utilization of servers,
in order to enhance the agility of the volatility estimation of
the so called “content workload” as a whole. We will also
investigate the algorithm’s scalability properties, theoretically
and experimentally, i.e., identify the number of videos that can
be analyzed in parallel.

The rest of this contribution is structured as follows: In
Section II, background concepts and high level properties of
the proposed integrated algorithm are discussed. In Section
III, the offline training is presented in detail, while Section
IV presents three different approaches for the construction of
the online test statistic. The integrated algorithms are assessed
on synthetic data in Section V and applied to real YouTube
content view data in Section VI. Conclusions and discussion
on future enhancements are included in Section VII.

II. BACKGROUND CONCEPTS AND INTEGRATED
ALGORITHM

A. Change Point Analysis

Change point (CP) detection refers to the problem of identi-
fying data structures that do not correspond to the anticipated
“normal” behavior. We note that, to the best of our knowledge,
this is the first work in the literature proposing an automated
mechanism for the detection of volatility changes in a time
series in the context of content popularity detection.

The theory of CP analysis is typically pertinent to anomaly
detection. In the domain of networking in particular, the
theory of CP detection has played an instrumental role in the
modelling of network traffic monitoring represented through
time series [15] and network anomaly / intrusion detection
[16]; for a comprehensive review the interested reader may
refer to [17]. In this framework, CP detection techniques [18]
are used for the identification of: (i) point anomalies and
outliers, i.e., data points deviating distinctively from the bulk
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of collected data; (ii) pattern anomalies, i.e., groups of data
points that are collectively anomalous with respect to historical
data; and, (iii) CP anomalies due to changes in the time series’s
statistical structure (in the mean / variance and in general
in the underlying distribution). In this work, we focus on
the detection of CP anomalies and consider the other two
categories as disturbances. The reasoning behind this choice
is that, on one hand, a resource allocation scheduler should
be insensitive to instantaneous / very short-term changes in
resource demand (e.g., represented as outliers in the content
demand), but, on the other hand, should be highly responsive
to changes in the underlying statistics of the demand.

B. Parametric and Non Parametric CP Detection Algorithms

Statistical based approaches are categorized as parametric
[19] and non-parametric [14]. Non-parametric methods do not
make use of a particular time series model fit and apply
directly the observed data to the monitoring procedures. In
this context, CUSUM based methods are non-parametric by
design. For example, the authors in [20] provide a CUSUM
stopping rule with application in computer vision problems.
A CUSUM approach for CP detection on observations with
an unknown distribution before and after a change, has been
recently developed in [21]. Furthermore, an algorithm based
on the Shiryaev-Roberts procedure was proposed in [22], to
detect anomalies in computer network traffic.

On the other hand, parametric methods utilize as inputs
values obtained from a specific model that has been fit
to the original data (instead of using the original data set
directly). As an example, Kalman filtering is combined with
several CP methods in [23]. In [24], traffic flows are modeled
using Markov chains and an anomaly detection mechanism
based on the generalized likelihood ratio test (LRT) algorithm.
Further examples assuming specific distribution for the data
include [25], in which a bivariate sequential generalized LRT
algorithm was proposed, assuming that the packet rate and
the packet size follow a Poisson and a normal distribution,
respectively. Other, non residual methods, include estimates’
detectors based on the differences between the estimated
model parameters (see [26], [27]), or based on the quasi-
likelihood scores estimators of the parameters of a GARCH
process [28].

C. Video Content Popularity Prediction vs Detection

The prediction of video content popularity characteristics
and dynamics [29], as well as models to predict popularity
evolution, e.g., [30] and [31], is a well studied topic in
the literature. Among others, in [32], the authors perform a
detailed analysis to characterize the YouTube traffic within a
campus network and conclude that in this scenario the content
popularity can be well approximated by the Zipf distribution.
A comprehensive survey on video traffic models can be found
in [33]. Overall, several methods have been proposed in this
context, including time series models, regression models [34]–
[36] and machine learning (deep neural networks) techniques
[37], [38].

Focusing on time series modelling in particular, linear,
non linear and hybrid models have invariably been proposed.
In early works, linear time series models have been used,
e.g., the authors in [39] introduce an ARMA(7, 7) model
to describe and predict the daily views of individual videos.
Alternatively, in [40], by taking into consideration seasonality,
an autoregressive integrated moving average (ARIMA) model
is used to forecast the popularity of online content. Other
approaches include fractional ARIMA (FARIMA) models, that
capture both short-range dependence (SRD) and long-range
dependence (LRD) statistical properties [41].

Recently, non linear models have further been proposed to
take into account the conditional heteroskedasticity and the
conditional volatility of the data series (seen as a stochastic
process). In these cases, GARCH models are involved. For ex-
ample, in the comparative study [42], the authors showed that
a hybrid ARIMA / GARCH model was superior to FARIMA
and wavelet neural network models, while in [43], a similar
hybrid FARIMA / GARCH approach was also introduced. In
essence, the existing hybrid models consider the second order
characteristics of a time series as a supplementary element to
further improve the forecasting or estimation of the content
popularity. More precisely, these solutions assume conditional
heteroskedasticity for the errors of the ARMA or FARIMA
model. An exception can be found in [44], where a video
demand predictor forecasts the volatility and correlation of
the streaming traffic associated with different videos, based
on multivariate GARCH models.

On the other hand, the problem of detecting (i.e., estimat-
ing), non-parametrically and in real time, CPs on content
popularity sequences, has not been adequately investigated
yet. Among of only a handful of related studies, in our
previous works [11], [12], [45] we proposed and implemented
a real-time, non-parametric and low-complexity video content
popularity CP detector (as opposed to predictor) for changes
in the mean value of video content popularity. In the present
contribution, in contrast to [11], [12], we introduce an inno-
vative online algorithm for the detection of CPs in the second
order statistics of content popularity data. We also present an
enlarged statistical framework, that includes parametric as well
as non-parametric detectors.

Our algorithm can be used as a “stand alone” mechanism,
but may also be a helpful complementary tool for prediction
approaches. With respect to the latter, it can be employed in
validating whether assumptions made by a prediction model
are still reasonably satisfied, or, whether the prediction model
/ procedure needs adjustment. Since, data are often influenced
by a multitude of external factors, stationarity assumptions
cannot be guaranteed over the whole monitoring period, espe-
cially for long time ranges.

D. Overview of the Proposed Integrated Algorithm

We summarize in Fig. 2 the overall algorithm as a flow
diagram that links an off-line (training) and an on-line phase,
as well as their individual components. Without loss of gener-
ality we assume an arbitrary time instance ms as the starting
point of a monitoring period. Then, the off-line analysis is



4

Fig. 2: Flow diagram of the real-time variance CP detector for content views data.

applied to the historical (training) data until t = ms, resulting
in the division of the data sequence in stable subsequences.
The last subsequence is the training sample representing the
initial sample of the on-line phase. During the training stage,
if a parametric approach is chosen, we estimate the model
parameters (e.g., ARMA or GARCH) and any other necessary
statistical characteristics that describe the last stable subse-
quence’s (time series) behavior. We note that without having
first obtained a statistically robust division of the training
sample into stable subsequences, the estimation of a model’s
parameters could be seriously impacted.

Next, an on-line detector is implemented for a monitoring
period t = ms+1, ...,ms+l. If a CP is detected at cp∗on, the CP
magnitude on the data structure is evaluated. The new starting
point for the subsequent monitoring window is then set to
m′s = cp∗on + d, where d is a constant specifying a period
assuming no change. Alternatively, if no change is detected
after l instances, the procedure restarts automatically from the
time point m′s = ms+l. The reasons behind this choice are
twofold. First, to keep the algorithm running over a window
of size at most l, in order to keep the computational complexity
low (lightweight), as opposed to allowing increasing window
sizes. Second, to facilitate the fast responsiveness of the algo-
rithm, as will be demonstrated through numerical examples in
Section V.

III. OFF-LINE PHASE

In this Section, the training phase of the algorithm is
discussed and the fundamental components of the off-line
scheme are presented. We choose a retrospective CP scheme
to ascertain that the on-line phase is indeed carried out on
homogeneous data. We note that standard off-line CP schemes
can only detect a single CP. To address the issue of detection
of multiple CPs, we modify the basic scheme with a novel
time series segmentation heuristic, that belongs to the family
of binary segmentation algorithms, similarly to [11], [12].

Let {Xn : n ∈ N} be a time series representing the content
views, for a specific video. Since we are interested only in the
variance fluctuation of the underlying random value (r.v.), we
assume a constant, over time, expected value E(Xi), where
E(·) denotes expectation. The stability of the mean value can
be ensured by a data transformation, such as taking the first
differences , ∆n = Xn −Xn−1, thus rendering E(Xi) = 0.

Considering the training phase, we have to check if the
variance structure remains stable over the whole training
period N . Consequently we study the null hypothesis,

H0 : σ2
1 = · · · = σ2

N , (1)

where σ2
n = Var(Xn) = E(X2

n), given that we have modified
the time series so that E(Xn) = 0. The (general) alternative
hypothesis is designed to allow the existence of multiple
changes li ∈ {1, . . . , N}, i = 1, . . . , r, where r is the
multitude of changes,

H1 : σ2
1 = . . . = σ2

l1 6= σ2
l1+1 = . . . = σ2

l2 6= . . .

· · · 6= σ2
lτ−1+1 = . . . = σ2

lτ 6= σ2
lτ+1 = . . . = σ2

N .
(2)

We develop a CP detector that only requires very general
sufficient assumptions to be satisfied by the time series of
content views. More specifically, we followed the work in [46]
in which the authors introduce a non-parametric test statistic
that requires only that the time series {Xn : n ∈ N} can be
approximated, with a distance measure, by an s-dependent
r.v. This assumption assures that time series needs not be
s-dependent itself. We also note that several popular weak
dependent time series models for the description of video
views satisfy the above assumption, e.g., ARMA or GARCH
models.

The exact form of the procedure is given in the quadratic
scheme,

TSoffN =
1

N
STn Ω̂−1

N Sn, (3)
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with (·)T denoting transposition, and, it converges in distribu-
tion asymptotically to,∫ 1

0

B2(n)dn, (N →∞), (4)

where (B(n) : n ∈ [0, 1]) are independent standard Brownian
bridges. (4) can be used to derive the critical values (cvoff )
of the test statistic TSoffN by Monte Carlo simulations that
approximate the paths of the Brownian bridge on a fine grid.
As an example, using this approach, the crossing boundaries
of (4) for alarm rates of 5% and 1% can be found to be 1.8
and 2.6, respectively.

The detector Sn is a variation of the squared CUSUM
method,

Sn =
1√
N

(
n∑
i=1

vech[X̃iX̃
T
i ]− n

N

N∑
i=1

vech[X̃iX̃
T
i ]

)
, (5)

where the vech(.) operator denotes the half-vectorization
of a matrix (as the covariance matrix is symmetric, half-
vectorization contains all the strictly necessary information)
and X̃i = Xi − XN , with XN = 1

N

∑N
j=1Xj the sample

average.
Since the procedure (3) is non-parametric, the dependence

between the observations enters only in the form of the long-
run covariance ΩN , expressed as

ΩN =

N∑
i=1

Cov(vech[X0X
T
0 ], vech[XiX

T
i ]) (6)

To build a consistent estimator of ΩN , denoted by Ω̂N , various
different approaches exist. This estimation problem is well
studied and we focus on the kernel based approach through
the use of Newey-West estimator (see [47]),

Ω̂N = Σ̂0 +

W∑
w=1

kBT

(
w

W + 1

)(
Σ̂w + Σ̂Tw

)
, (7)

where kBT (.) corresponds to the Bartlett weight,

kBT (x) =

{
1− |x|, for |x| 6 1

0, otherwise
, (8)

and Σ̂w denotes the empirical auto-covariance matrix for lag
w,

Σ̂w =
1

N

N∑
n=w+1

(
Xn −X

) (
Xn−w −X

)T
. (9)

Following common practice in literature we chose W =
log10(N). To summarize, the existence of a CP is announced
if TSoffN > cvoffV and the estimated time of change is,

cp∗off =
1

N
argmax
16n6N

TSoffN . (10)

Finally, to face the potential of detecting multiple CPs on the
historical data set, we have integrated an extended version of
the binary segmentation (BS) algorithm, proposed in [11], to
the original test TSoffN . The algorithm combines the standard
BS and the iterative cumulative sum of squares (ICSS) [48]
methods and operates briefly as follows: First, a single CP is

searched in the historical sample. In case of no change, the
procedure stops and H0 is accepted. Otherwise, the detected
CP is used to divide the time series into two time series in
which new searches are performed. The procedure is iterated,
until no more CPs are detected. In the last step, we consider
the CPs estimated previously in pairs and check if H0 is still
rejected in the segment delimited by each pair. If not, the CPs
that fall in the particular segment are eliminated.

IV. ON-LINE METHODS

In this Section we present three alternative on-line ap-
proaches and discuss jointly for each one the preparation stage
and the corresponding on-line CP detector. The on-line phase
is based on the assumption of an homogeneous data sequence
of length m ∈ N+, determined by the off-line phase, for
which,

σ2
1 = · · · = σ2

m. (11)

Our aim is to test if (11) holds as new observations become
available in a time real framework. Hence, the statistical
problem is formulated as the following hypothesis test,

H0 : σ2
1 = · · · = σ2

m = σ2
m+1 = · · · ,

H1 : σ2
m+1 = · · · = σ2

m+l−1 6= σ2
m+l = σ2

m+l+1 · · · ,
m, l ∈ N+. (12)

In general, any on-line CP method can be described as a
stopping time procedure with stopping time τ(m),

τ(m) = min{l ∈ N : TSon(m, l) ≥ b}. (13)

The value of the test statistic TSon(m, l) is calculated online
for every l in the monitoring period. The rule stops, and a
change is announced, if the test statistic exceeds the boundary
function b = cvong. The critical value cvon is derived from
the asymptotic behavior of the detector TSon/g under the null
hypothesis, for which Pr (τ(m) <∞) = α, α ∈ (0, 1) the
significance level. We note that γ, γ ∈ (0, 1

2 ] is a sensitivity
parameter; the larger the value of γ, the smaller the value of
b, which leads to a quicker detection of a potential CP, at the
cost of an increase in the false alarm rate.

Below, we consider three on-line CP approaches, based on
the general assumptions for the underlying process: i) a non-
parametric approach based on [49], denoted by NP ; ii) a
linear time series (ARMA) approach as in [50], denoted by
L; and, iii) a nonlinear time series (GARCH) approach like in
[51], denoted by NL. The quantities {TSon, b, cvon, g} will
be indexed accordingly.

A. Non-Parametric (NP) Approach

Non-parametric approaches work directly with the observed
data and are ideal for datasets with a high degree of model
fitting ambiguity. In this framework, in the preparation phase
we only compute a particular form of the long-run estimator,
avoiding the difficulties related to the estimation of a paramet-
ric model.

The proposed procedure is applied under the assumption
that the observations {Xn : n ∈ Z} satisfy the generalized
dependence concept of L-2 near epoch dependence (see [52]).
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Since the test is model-independent, the dependence between
observations is captured through the long-run function Dn,
expressed as

Dn := lim
n→∞

E

(
1

n
AiA

T
i

)
, (14)

where Ai =
∑i
t=1

(
X2
t − E

(
X2
t

))
. We also assume that Dn

is finite under the H0 hypothesis, which is necessary for the
convergence of the asymptotic null behaviour.

As explained above, the long-run factor is computed in
the preparation phase, considering the training sample. For
its evaluation we choose the kernel estimation method, as in
[53]. More specifically,

D̂m =

u∑
i=1

u∑
j=1

kBT

(
i− j
r

)
V̂iV̂

T
j , (15)

is an estimator of Dm, V̂t = 1√
m

(
X2
t − 1

m

∑m
i=1X

2
i

)
and

kBT (·) is the Bartlett kernel, already mentioned in (7).
The test statistic is expressed as

TSonNP (m, l) =
l√
m
D̂
− 1

2
m

(
m+l∑
i=m

X2
i −

1

m

m∑
i=1

X2
i .

)
(16)

The boundary function bNP = cvonNP gNP is strictly
aligned with the chosen size of the monitoring period l
normalized to the length of the training period, denoted
by H = l/m. Then the weight function is expressed as
gNP =

(
1 + l

m

) (
l

m+l

)γ
, γ ∈ [0, 1/2) and the critical value

is derived from the asymptotic behavior of the stopping rule,

lim
m→∞

Pr{τ(m) <∞} = lim
m→∞

Pr {TSonNP ≥ bNP (α)}

= lim
m→∞

Pr

{
TSonNP
gNP

≥ conNP (α)

}
= Pr

(
sup
n∈[0,1]

(
H

1 +H

) 1
2−γ |W (n)|

nγ

)
= α. (17)

B. Linear (L) Parametric Approach Using an Autoregressive
Moving Average (ARMA) Model

Parametric approaches, monitor the estimated values ob-
tained from a specific model fit to the observed time-series.
This is very efficient whenever a parametric model sufficiently
describes the dependence structure of the real data. We present
two residual based parametric schemes, constructed from the
residuals of the model fit to the data, starting with an ARMA
model. In the preparation stage, the model residuals are
estimated, under the assumption of a homogeneous underlying
process. Under H0, the residuals before and after the beginning
of the monitoring should behave similarly. On the other hand,
if a CP exists in the monitoring period, the residuals are
expected to deviate from those in the training period.

ARMA processes provide linear and parsimonious de-
scriptions of (weakly) stationary processes. A time series
{Xn : n ∈ N} is called an ARMA(p, q) process of orders p
and q, if it satisfies the stochastic equation,

φn(B)(Xn − µn) = θn(B)εn, n ∈ Z, (18)

where µn are mean parameters (usually non stationary),
φn(z) = 1−φ1nz−· · ·−φpnzp and θn(z) = 1−θ1nz−· · ·−
θqnz

q are the autoregressive and moving average polynomials
of the model respectively, and B the backshift operator. It is
also assumed that the ARMA process is causal and invertible,
i.e.,

φn(z) 6= 0 and θn(z) 6= 0, for all |z| ≤ 1. (19)

The error terms {εn : n ∈ Z} are a sequence of independent
and identically distributed (i.i.d) r.v. with zero mean, E(ε1) =
0 and constant variance, E(ε21) = σ2.

The ARMA model in (18) depends on p + q + 2 pa-
rameters, represented by the vector βn = (µn, φn, θn, σ

2
n),

where φn = (φ1n, · · · , φpn) and θn = (θ1n, · · · , θqn). In the
defined training period of size m the parameters of the ARMA
model are not time dependent, i.e., they are the same for the
observations X1, · · · , Xm, denoted by β0 in the following,

β0 = (µ0, φ0, θ0, σ
2
0). (20)

The preparation stage is applied to the training sample for
two reasons. Firstly, in order to specify the order (p, q) of the
corresponding ARMA model, by selecting the combination
that provides the lower value for the Bayes information
criterion (BIC),

BIC = −2 ln(L̂) + k ln(n), (21)

where L̂ is the maximum value of the likelihood function
of the model, k is the number of the estimated parameters
and n is the sample size. Secondly, in order to estimate the
parameters β0 of the ARMA model through the estimators
β̂0 = (µ̂0, φ̂0, θ̂0, σ̂

2
0), computed, for example, by the method

of maximum likelihood estimation or least squares.
Then, the model residuals are given by

ε̂n = X̂n −
p∑
i=1

φ̂i0X̂n−i −
q∑
i=1

θ̂i0ε̂n−i, (22)

where X̂n = Xn−µ̂0. The detector is built from the (squared)
residuals ε̂n, as:

1√
m
TSonL (m, l) =

1√
mη̂m

∣∣∣∣∣
m+l∑

n=m+1

ε̂2n −
m∑
n=1

ε̂2n

∣∣∣∣∣, (23)

where η̂2
m is a weakly consistent estimator of the moment

η2
m = E

[(
ε2m − σ2

m

)2]
.

Finally, the boundary function is expressed as bL = cvonL gL,
where gL =

(
1 + l

m

) (
l

m+l

)γ
, γ ∈ [0, 1/2) and the critical

value is obtained according to [50] as

lim
m→∞

Pr{τ(m) <∞} = lim
m→∞

Pr

{
TSonL
gL

≥ conL (α)

}
= Pr

(
sup

n∈(0,1)

|W (n)|
nγ

≥ cvonL (α)

)
= α. (24)
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C. Nonlinear (NL) Parametric Approach Using a General-
ized Autoregressive Conditional Heteroskedasticity (GARCH)
Model

A time series {Xn : n ∈ Z} follows the GARCH(p, q)
process, if,

Xn = σnεn,

σ2
n = ωn +

q∑
i=1

αinX
2
n−i +

p∑
j=1

βjnσ
2
n−j ,

where ωn > 0, αin, βjn > 0 and {εn : n ∈ Z} is a sequence
of i.i.d r.v. with E(ε1) = 0 and E(ε21) = 1. We estimate the set
of parameters θm during the initial training period, denoted in
the following by θ0 = (ω0, α10,, · · · , αq0, β10, · · · , βp0); the
estimation is performed by applying the Gaussian maximum-
likelihood estimator (GMLE) θ̂0 of θ0 on the last m observa-
tions, as proposed in [54]. The GMLE function is given by

Fm(θ;X1, · · · , Xm) =

m∏
n=1

1√
2πσ̂2

n

exp

(
−X

2
n

2σ̂2
n

)
, (25)

where σ̂2
n are constructed recursively, as,

σ̂2
n = ωn +

q∑
i=1

αinX
2
n−i +

p∑
j=1

βjnX
2
n−j . (26)

Then, the GMLE of θm is,

θ̂m = argmax
θ∈Θ

Fm(θ;X1, · · · , Xm)

=θ∈Θ
1

m

m∑
n=1

(
X2
n

σ̂2
n

+ ln(σ̂2
n)

)
. (27)

The residuals of the GARCH process are subsequently ob-
tained from the GMLE as

ε̂n =
Xn

σ̂n(θ̂m)
. (28)

Based on the (squared) residuals, the test statistic is de-
scribed as in [55],

TSonNL(m, l) =

√
m

Var(ε̂2m)

∣∣∣∣∣1l
l∑

n=1

ε̂2n −
1

m

m∑
n=1

ε̂2n

∣∣∣∣∣, (29)

where Var(ε̂2n) denotes the variance of the squared residuals
of the training period, i.e., Var(ε̂2m) = E(ε̂4m)−

(
E
(
ε̂2m
))2

.
Considering the boundary function bNL = cvonNLgNL, we

choose to work with gNL = 1 as in [51]; consequently, the
critical value is given by

lim
m→∞

Pr{τ(m) <∞} = lim
m→∞

Pr {TSonNL ≥ cvonNL(α)}

= Pr

(
sup

n∈(0,1)

|W (n)| ≥ cvonNL(α)

)
= α. (30)

D. Evaluation of the Critical Values for the CPs Tests

The on-line critical values for the three procedures are
estimated using Monte Carlo simulations, similarly to the off-
line case, considering that

cvonNP (α) = sup
n∈[0,1]

(
H

1 +H

) 1
2−γ |W (n)|

nγ
, (31)

cvonL (α) = sup
n∈(0,1)

|W (n)|
nγ

, (32)

cvonNL(α) = sup
n∈(0,1)

|W (n)|. (33)

With respect to the estimation of the magnitude of a detected
CP denoted by cp∗on, in the NP scenario, we estimate the
deviation of the variance in pre-CP and post-CP data by com-
paring the variance of a pre-determined historical subsample,
Var(Xms : Xcp∗on−h) to the variance “in the range” of the
detected CP as Var(Xcp∗on−h : Xcp∗on+h), accounting for the
fact that a time lag ±h is required to establish the presence
of an actual change.

We finally propose an alternative scheme to predict the
post CP behavior in the case of a parametric model. We
apply the parametric model (ARMA or GARCH) on the time
horizon tcp∗on−h, . . . , tcp∗on , in which we assume that the actual
change has already occurred. Thus, a well defined subsample
is provided to fit the model parameters and predict the next
values using this adaptive model.

V. PERFORMANCE EVALUATION OF THE VARIANCE CP
DETECTION APPROACHES ON SYNTHETIC DATA

In this Section, we evaluate the performance of the inte-
grated algorithm with the three aforementioned variations of
the on-line phase – NP , L and NL, – on two sets of synthetic
data. In further detail, we report the results of Monte Carlo
simulations using either an ARMA(1,1) or a GARCH(1,1)
process to generate the time series; as a reminder, both ARMA
and GARCH are well known models that have been shown to
fit well video content popularity dynamics (see section II).

The synthetic sample size under consideration is N = 1000
while we introduce a variance CP at cp∗ = 500; this is
achieved by transforming the initial parameters vector of
the chosen model. Evaluations are conducted based on 1000
repetitions for a significance level α = 0.01. In all tests we
set the beginning of the monitoring period at ms = 200,
the monitoring window length at l = 100 and the minimum
interval between two successive CPs at d = 80 (this latter
choice is justified by experiments with real data that will be
presented in Section V). We experiment with two values for
the sensitivity parameter γ ∈ {0, 0.25} (as a reminder, γ only
affects cvonNP and cvonL , see (31) and (32)).

We first evaluate the performance of the three alternative
on-line procedures in the integrated algorithm, for a wide
range of ARMA(1,1) models. We recall that the variance of an
ARMA(1,1) model depends on the model parameters φi, θi
and the variance of the error terms σ2

i , i.e.,

Var(Xn) =

(
1 + 2φiθi + θ2

i

)
σ2
i

1− φ2
i

.
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TABLE I: Results from an ARMA generating process and for one change in the variance.

ARMA(1,1)

β γ Non parametric approach (NP ) ARMA approach (L) GARCH approach (NL)

Detected CPs ĉp∗ Detected CPs ĉp∗ Detected CPs ĉp∗

0 1 > 1 med 0 1 > 1 med 0 1 > 1 med

β0 0 0.99 0.01 0 - 0.99 0.01 0 - 0.98 0.02 0 -

0.25 0.95 0.05 0 - 0.98 0.02 0 -

β1 0 0.49 0.5 0.01 - 0.48 0.52 0 554 0.74 0.26 0 -

0.25 0.18 0.76 0.06 549 0.07 0.93 0 548

β2 0 0.04 0.94 0.02 550 0.03 0.95 0.02 546 0.15 0.83 0.02 549

0.25 0 0.93 0.07 531 0 0.96 0.04 521

β3 0 0.01 0.96 0.03 536 0.01 0.98 0.01 535 0 0.97 0.03 548

0.25 0 0.92 0.08 521 0 0.97 0.03 521

β4 0 0 0.97 0.03 533 0 0.99 0.01 530 0.01 0.97 0.02 544

0.25 0 0.93 0.07 519 0 0.97 0.03 513

TABLE II: Results from a GARCH generating process and for one change in the variance.

GARCH(1,1)

θ γ non parametric approach (NP ) ARMA approach (L) GARCH approach (NL)

Detected CPs ĉp∗ Detected CPs ĉp∗ Detected CPs ĉp∗

0 1 > 1 med 0 1 > 1 med 0 1 > 1 med

θ0 0 0.85 0.15 0 - 0.75 0.25 0 - 0.9 0.1 0 -

0.25 0.65 0.35 0 - 0.42 0.58 0 -

θ1 0 0.16 0.8 0.04 527 0.03 0.77 0.23 528 0.04 0.92 0.04 550

0.25 0 0.87 0.13 521 0 0.6 0.4 515

θ2 0 0.03 0.87 0.1 524 0.01 0.76 0.23 521 0.01 0.93 0.06 544

0.25 0.01 0.85 0.14 516 0 0.56 0.44 510

θ3 0 0 0.93 0.07 511 0 0.7 0.3 511 0 0.93 0.07 531

0.25 0 0.81 0.19 508 0 0.58 0.42 505

We consider a change by transforming the time series model
defined by the parameter vector β0 to one of the vectors
βi, i = 1, 2, 3, 4.
• Model 0: β0 = (φ0, θ0, σ0) = (0.4, 0.2, 0.5),
• Model 1: β1 = (0.4, 0.2, 1),
• Model 2: β2 = (0.3, 0.3, 1.5),
• Model 3: β3 = (0.5, 0.3, 1.5),
• Model 4: β4 = (0.4, 0.2, 2).
We use Model 0 as the baseline. In Model 1 a small

change in the error variance is introduced, which increases
the uncertainty. Models 2 and 3 lead to medium changes
in the variance and also transform the dependence structure
between the r.v. On the other hand in Model 4 a large change
is introduced by increasing the uncertainty.

In Table 1 we report the results of the simulation study.
We depict the aggregate percentage of the CPs over the
multitude of the simulations. For every test and each iteration
we calculate the exact number of CPs detected:
• 0 when no CPs are detected, denoting the percentage of

false negatives in all cases but the first (in which β0 does
not change); in this latter case it corresponds to the true
success rate;

• 1 when a single CP is detected, denoting the true success

rate in all cases but the first, in which it corresponds to
a false positive rate;

• > 1 when more than one CPs are detected, denoting the
percentage of false positives, in all cases other than the
first. To obtain the overall false positive percentage, this
value needs to be added to the false positive percentage
above.

Furthermore, we denote by ĉp∗ the median of the time instance
of the identification of the true CP, evaluated in all cases but
the first. The closest this number to the true point of the CP at
500, the quicker the detection and the better the responsiveness
of the integrated algorithm.

Initially, we discuss the impact of the choice of the sensitiv-
ity parameter γ in the L and NP approaches. Studying Table
I, we conclude that γ = 0 is the most reasonable choice in the
case of medium or more significant changes in the variance,
since it leads to significantly lower false positive rates. On the
other hand, in the case of only small changes in the variance,
captured in our study in the transformation from the β0 to
the β1 model, a higher value of γ is needed (intuitively, for
smaller changes a larger sensitivity is required). Therefore,
depending on whether smaller or larger deviations need to be
rapidly detected we can fine-tune the value of γ. For the sake
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of simplicity, in the following we focus on γ = 0 (larger
deviations).

According to Table I, the three approaches provide ap-
propriate empirical sizes, and the false alarm rates are in
all cases close to the significance level α = 0.01. Overall
the L procedure outperforms the NP and the NL, both in
terms of the true alarm rates as well as in terms of the
detection time; this is intuitive as in this first experiment the
underlying process is generated by a linear ARMA(1,1) model
and therefore a linear parametric model is excellently suited to
capture the underlying dynamics. Furthermore, comparing the
NP and the NL approaches, Table I illustrates that the NP is
more sensitive than the NL approach, leading to more accurate
detection for small changes at the cost of increased false
positive rates in the case of larger changes. The opposite is true
for the NL approach that appears to be more “conservative”.
Moreover, the fact that the NP procedure is statistically more
sensitive leads to a quicker detection of a CP as captured
through ĉp∗.

We proceed to the more challenging case of a GARCH(1,1)
generating model, with parameter vector θi = (ωi, αi, βi) that
fully describes the model and unconditional variance,

Var(Xn) =
ωi

(1− αi − βi)
.

To examine the alarm rates we assume the following models,

• Model 0: θ0 = (ω0, α0, β0) = (0.05, 0.4, 0.3),
• Model 1: θ1 = (0.5, 0.2, 0.1),
• Model 2: θ2 = (0.5, 0.3, 0.2),
• Model 3: θ3 = (1, 0.3, 0.2).

GARCH is a varying volatility model, allowing volatility
changes over time. Being more elaborate and complex in terms
of the dependence of the variance on the model parameters,
the higher false alarm and the lower true alarm rates in
Table II are reasonable. In this case, the L procedure seems
fully inappropriate irrespective of the choice of γ = 0 or
γ = 0.25, suffering from very high false positive rates,
since constant variance is assumed. The NL procedure, as
expected, surpasses both the L and the NP procedures, as
it is excellently suited to capture the GARCH process. More
specifically, the true alarm rate estimation is stable for the
different magnitudes of changes, with a detection time lag
ranging from 50 instances for small changes to 31 instances
for larger changes. On the other hand, the NP procedure
appears to capture well the actual changes for γ = 0, with
success rates relatively close to the those of the NL procedure,
especially for medium / large changes. However, for γ = 0.25,
the approach leads to ineligible false positive rates, despite the
fact that it can identify small changes more efficiently. The
NP method also achieves faster detection of changes, with
ĉp∗ ranging from 5 to 28 time instances.

Based on the analysis of the Monte Carlo results for the
three procedures under the two different time series generating
models, we can synthesize our overall conclusions in the
following two points:

1) The NL and the NP approaches adapt better to a wider
range of models and underlying assumptions; if there are
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Fig. 3: Estimated a) frequency and b) cumulative frequency of
the number of CPs per time series, for three different Video
Sets.
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Fig. 4: Interim time between consecutive CPs: a) Boxplot in-
cluding the interval (5%−95%) (dashed line) and (10%−90%)
interval (dotted line), b) Cumulative frequency for the interim
time of consecutive CPs.

indications of a highly nonlinear underlying procedure
the NP approach could render better results;

2) The L approach is strongly related to the ARMA model
assumptions and therefore it is advisable to be applied
only if these can be readily shown to hold.

VI. ILLUSTRATION OF THE INTEGRATED ALGORITHM
USING REAL DATA

Finally, we study the performance of the proposed algo-
rithms on monitoring real YouTube video traces provided
within the framework of the CONGAS project [56]; the dataset
consists of 882 videos traces and the observation period is of
N = 1000 time instances.

In this Section, we only adopt the non parametric (NP )
and the GARCH (NL) approaches. We exclude the ARMA
(L) approach from the evaluation, based on the conclusions
of the previous Section. We work with the centered simple
returns of the content popularity time series,

Yn = (Xn+1 −Xn)− 1

900

900∑
n=1

(Xn+1 −Xn),

n = 1, . . . , 900

and then apply the methods on Yn.
In order to clarify some general characteristics of the

dataset, in terms of changing content dynamics, we first apply
the off-line algorithm to the video traces. In Fig. 3, we consider
three video sets; Video Set 1 contains the whole dataset,
Video Set 2 contains the videos with average number of
visits E ((Y (1) : Y (1000)) ≥ 10 and Video Set 3 contains the
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Fig. 5: Boxplot of the number of upward and downward CPs,
per time series.

videos with average number of visits greater or equal to 20.
Fig. 3, depicts a high percentage of rejecting the H0 hypoth-
esis, for a significance level of α = 0.05. Especially for the
Video Sets 1 and 2, the rejection of the assumption of normal
behavior exceeds 60% and 65% of the time series, respectively.
This result confirms that a sufficiently high number of time
series provide content popularity anomalies, for example in
Video Set 3, in 10% of the cases there are over than four CPs
per time series. This small analysis confirms the suitability of
change point analysis as a viable approach for the detection
of changes in video content popularity dynamics.

Subsequently, in Fig. 4, we analyze the interim time between
consecutive CPs. The respective boxplot diagrams illustrate the
existence of sufficiently large intervals between consecutive
changes; this fact supports our subtle assumption in Section
III regarding the existence of a sufficient gap between two
consecutive CPs (e.g., > 80 instances). In particular, 90% and
95% of the intervals correspond to consecutive CPs exceeding
100 and 80 time instances, respectively. This outcome assures
that a sufficiently large training window after a detected
change can be applied, denoted by the parameter d.

Additionally, Fig. 5, illustrates the time instances of upward
(increase in volatility) and downward changes (decrease in
volatility) in the form of a boxplot. It is shown that upward
changes occur earlier in time than downward changes.

We consider now the performance of the on-line approach,
by illustrating the estimated CPs in the second order char-
acteristics of different time series. We choose the beginning
of the monitoring period at ms = 200, the sensitivity
parameter γ = 0 and the significance level α = 0.05.
To fit a GARCH(p, q) model we consider all the possible
combinations of the p, q = 1, · · · , 4 and choose the orders
p, q that minimize the Akaike information criterion (AIC).

The corresponding results are depicted in Fig. 6 at the top
of the next page. The first row of results represent the detected
changes in the mean value by using the RCPD algorithm
presented in [11]. In the second and third row the estimated
CPs in the variance are depicted, for the same time series, by
applying on the first order differences Yn the non parametric
(NP ) approach and the GARCH (NL) approach, respectively.
Solid lines represent upwards changes while dashed lines
represent downward changes.

Firstly, we observe that the variance changes are closely
connected to a corresponding mean change. In particular,
variance changes are less in multitude and seem to be related

to the most significant mean changes, which can be intuitively
explained by considering that if the average number of views
changes significantly, the variance in the number of views
at the respective interval will follow a similar trend. The
importance of jointly studying the changes in the mean and the
variance value is also depicted in Fig. 6. For instance, in Fig.
6a, to describe or handle the content popularity dynamics it
is crucial to estimate quickly the“explosion” in variance after
time instances 500 or 700, that leads to a high instability of the
values from the mean. On the other hand, variance “reduction”
detection is also important, as it implies that values remain
relatively constant, like in Fig. 6a between time instances 600
and 700.

Both the NP and the NL approaches provide similar results
in terms of the number of CPs and the detection time of the
estimated CPs. More precisely, in Fig. 6a, both procedures
detect the same number of changes, while the NP method
gives a slightly quicker detection.

Focusing on the capability of the proposed algorithm to
estimate the magnitude of a detected CP, we use the GARCH
model. We estimate the parameters of the model considering
10 time instances before the detected change and forecast the
variance for 10 time instances after the CP. For the time series
in Fig. 6b, the actual variance after each change is 7.92, 12.51
and 38.66, while the predicted variance values are 7.39, 13.52
and 39.24, respectively. As we observe, in this case the NL
algorithm can efficiently describe the post change variance
behavior.

In the future, we will develop a joint approach identifying
CPs simultaneously in the first and the second order character-
istics, providing an aggregated and compact view of content
popularity dynamics.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an integrated algorithm for
the detection of changes in the variance of a time series.
We proposed to combine an off-line approach during which
algorithmic and model parameters are learned. Subsequently,
during the on-line part of the algorithm, changes in the
variance of the time series are identified using a stopping time
procedure. Whenever the value of a test statistic surpasses a
predefined critical value, a change is declared.

To develop the test statistic we proposed three different
approaches: i) a non-parametric approach, ii) a parametric
approach using an ARMA model, and, iii) a parametric
approach using a nonlinear GARCH model. Our studies using
synthetic data indicated that the ARMA parametric approach
does not generalize well. Due to this fact, we only performed
experiments on real data using the non-parametric and the
GARCH approaches. We concluded that both can equally
well identify large deviations in the variance and that in the
general case the non-parametric approach can provide quicker
detection of CPs in the datasets studied in this work. In the
future, we will develop joint detectors for the mean and the
variance of video content popularity.
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Fig. 6: CPs detected in the mean for three different time series.

0 100 200 300 400 500 600 700 800 900

Time

-200

-150

-100

-50

0

50

100

150

200

C
e
n
te

re
d
 R

e
tu

rn
s

0 100 200 300 400 500 600 700 800 900

Time

-60

-40

-20

0

20

40

60

C
e
n
te

re
d
 R

e
tu

rn
s

0 100 200 300 400 500 600 700 800 900

Time

-60

-40

-20

0

20

40

60

C
e
n
te

re
d
 R

e
tu

rn
s

Fig. 7: CPs detected in the variance of the corresponding centered returns, applying the non parametric process.
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Fig. 8: Corresponding outputs, applying the GARCH process.

Fig. 9: CPs detected in the mean (first row) and variance (second and third row) for three different content views time series.
Solid and dashed lines represent an upward and a downward change, respectively.
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[46] A. Aue, S. Hörmann, L. Horváth, and M. Reimherr, “Break detection
in the covariance structure of multivariate time series models,” Ann.
Statist., vol. 37, no. 6B, pp. 4046–4087, Dec. 2009.

[47] D. W. Andrews, “Heteroskedasticity and autocorrelation consistent co-
variance matrix estimation,” Econometrica: J. Econometric Soc., vol. 59,
no. 3, pp. 817–858, May 1991.

[48] C. Inclan and G. C. Tiao, “Use of cumulative sums of squares for
retrospective detection of changes of variance,” J. Amer. Statist. Assoc.,
vol. 89, no. 427, pp. 913–923, Sept. 1994.

[49] K. Pape, D. Wied, and P. Galeano, “Monitoring multivariate variance
changes,” J. Empirical Finance, vol. 75A, pp. 54–68, Dec. 2016.

[50] A. Aue, C. Dienes, S. Fremdt, J. Steinebach et al., “Reaction times of
monitoring schemes for ARMA time series,” Bernoulli, vol. 21, no. 2,
pp. 1238–1259, May 2015.

[51] Y. L. Na, Okyoung and S. Lee, “Monitoring parameter change in time
series models,” Statist. Methods Appl., vol. 20, no. 2, pp. 171–199, June
2011.

[52] J. Davidson, Stochastic limit theory: An introduction for econometri-
cians, New York, USA: Oxford University Press (OUP), 1994.

[53] D. Wied, M. Arnold, N. Bissantz et al., “A new fluctuation test for
constant variances with applications to finance,” Metrica, vol. 75, no. 8,
pp. 1111–1127, Nov. 2012.

[54] C. Francq and J.-M. Zakoian, “Maximum likelihood estimation of pure
GARCH and ARMA-GARCH processes,” Bernoulli, vol. 10, no. 4, pp.
605–637, Aug. 2004.

[55] W. L. N. Leung, Sze Him and C. Y. Yau, “Sequential change-point
detection in time series models based on pairwise likelihood,” Statistica
Sinica, vol. 27, no. 2, pp. 575–605, Apr. 2017.

[56] M. Zeni, D. Miorandi, and F. De Pellegrini, “Youstatanalyzer: a tool
for analysing the dynamics of youtube content popularity,” in Proc. 7th
Int. Conf. Perform. Eval. Methodol. Tools, Torino, Italy, Dec. 2013, pp.
286–289.

SOTIRIS SKAPERAS (S’18) received the
B.Sc.degree in mathematics and the M.Sc.
degree in statistics and modeling from the
Department of Mathematics, Aristotle University of
Thessaloniki,Greece, in 2013 and 2016, respectively.
He is currently pursuing the Ph.D. degree in the
area of resource management in 5G networks from
the Department of Applied Informatics, University
of Macedonia, Thessaloniki, Greece. He involved
in the areas of resource allocation/load balancing
for 5G networks using time-series/change point

analysis and stochastic modeling.



13

LEFTERIS MAMATAS (S’04–M’08) received the
Diploma and Ph.D. degrees from the Department of
Electrical and Computer Engineering, Democritus
University of Thrace, Greece, in 2003 and 2008,
respectively. He is currently an Assistant Professor
with the Department of Applied Informatics, Univer-
sity of Macedonia, Thessaloniki, Greece, where he
leads the Softwarized Wireless Networks Research
Group. He was a Researcher with the University
College London, U.K., the Space Internetworking
Center/Democritus University of Thrace, Greece,

and the DoCoMo Euro-Labs, Munich, Germany. He has published more than
60 articles in international journals and conferences. His research interests
include the areas of software-defined networks, the Internet of Things,
5G networks, and multi-access edge computing. He participated in many
international research projects, such as NECOS (H2020), FED4FIRE+OC4
(H2020), WiSHFUL OC2 (H2020), MONROE OC2 (H2020), Dolfin(FP7),
UniverSELF (FP7), and Extending Internet into Space (ESA). He served as the
General Chair for the WWIC2016 Conference and the INFO-COM SWFAN
2016 Workshop and as the TPC Chair for the INFOCOM SWFAN 2017, E-
DTN 2009 and IFIP WWIC 2012 conferences/workshops.He is a Guest Editor
for the Elsevier Ad Hoc Networks Journal.

ARSENIA CHORTI (S’00–M’05) received the
M.Eng. degree in electrical and electronic engi-
neering from the University of Patras, Greece, the
D.E.A. degree in electronics from the University
Pierre et Marie Curie, Paris VI, France, and the
Ph.D. degree in electrical engineering from Imperial
College London, U.K., in November 2005. She un-
dertook post-doctoral positions at the University of
Southampton, U.K., Technical University of Crete,
Greece, and University College London, U.K., from
2005 to 2008. She served as a Senior Lecturer in

communications for Middlesex University, U.K., from December 2008 to
April 2010. From 2010 to 2013, she was a Marie Curie IOF Researcher with
Princeton University, NJ, USA, and with the Institute of Computer Science-
FORTH, Greece. From 2013 to 2017, she was a Lecturer with the University of
Essex, U.K. She is currently an Associate Professor with ETIS, UMR 8051,
University Paris Seine, University Cergy-Pontoise, ENSEA, CNRS, Cergy,
France. She is also a Visiting Research Fellow with the University of Essex,
U.K. Her work has so far been disseminated in more than 60 journals and
international conferences and one book.


