
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

A Comparative Evaluation of Edge Cloud Virtualization Technologies

Polychronis Valsamas , Student Member, IEEE, Lefteris Mamatas , Member, IEEE, and Luis M. Contreras

Abstract—Edge cloud computing is a crucial enabler for

applications or network services with stringent communication

requirements in the 5G networks and beyond era. Although

edge compute resources contribute to a significant portion of

end-to-end performance (e.g., delay), the involved performance

trade-offs in relation to the utilized virtualization technologies

and application functions are not yet thoroughly investigated. In

this context, we study the performance dynamics of alternative

edge cloud technologies, including different unikernel flavors,

container builds, and implementations of exemplary web ser-

vices. Our experiments do not target identifying a single best

option, rather than the involved performance trade-offs with

respect to both service and infrastructure viewpoints as well as

realistic edge cloud tasks, including on service operation, cloud

resource or service elasticity, dynamic resource allocation and

removal. We provide insights gained from a relevant extensive

comparative evaluation based on a novel edge cloud exper-

imentation infrastructure. Our experimental results inspired

a conceptual edge cloud orchestration platform and its basic

design guidelines, i.e., mixing and matching heterogeneous edge

cloud virtual entities with particular operational or performance

requirements.

Index Terms—5G Networks and Beyond, Containers, Uniker-

nels, Comparative Evaluation, Edge Cloud Orchestration

I. INTRODUCTION

5
G networks and beyond (5GB) [1] are being characterized
by significant network performance and capacity advan-

tages, especially at the radio level. They devised a promising
agenda targeting new applications that enable a radical trans-
formation of vertical sectors, including manufacture, media
& entertainment, health, energy and automotive industry.
Such services should adhere to stringent requirements, e.g.,
ultra-low delay or high throughput, scalable operation, and
increased adaptability to dynamic contexts, in terms of service
needs or resource availability. In other words, there is a need
for systemic adaptations of 5GB ecosystems towards these
goals. For example, virtual resources contribute significantly
to end-to-end (E2E) service performance. Indicatively, for a
50ms E2E delay documented in paper [2] on 5G networks,
radio and transport aspects caused the 17% of delay, while
cloud dimension the 83%.

Along these lines, edge cloud computing is an important
enabling technology for 5GB ecosystems, bringing compu-
tation close to end-users to improve service performance,
reliability and data privacy of users. Thus, how to properly
exploit the available computing substrate is a major concern
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for network operators with respect to the overall network and
service management. Several aspects can be considered to take
informed decisions for the usage of this infrastructure. Clearly,
the performance improvement that can be obtained from using
distinct compute facilities, the availability of resources as the
services become deployed, the need for elasticity to accom-
modate a variety of application requirements (as anticipated
in 5G), as well as the particular virtualization solutions that
can be put in place to account for all of this.

For instance, large-scale service deployments usually serve
a vast amount of users spread throughout the globe, which
require the involvement of edge cloud resources in many
different places. However, it is challenging to deploy resources
near every user, consequently, there is a need for optimized
cloud facilities not only towards particular performance re-
quirements, but also mitigating a potential limited resource
availability. Such infrastructures should be able to mobilize
any available deployment, even with alternative server con-
figurations, as well as network or virtualization technologies.

Given the fact that user demands or application require-
ments may be dynamic, edge clouds should also support
a quick deployment or removal of virtual resources, im-
plementing horizontal and vertical elasticity processes, i.e.,
adapting the service deployment and cloud resources to these
requirements [3], respectively. For example, legacy cloud
deployments may be using inefficient virtualization technolo-
gies, including traditional virtual machines (VMs), that face
slow times for deployment, downloading or scaling up of
virtual resources.

There is an on-going effort towards adopting lightweight
virtualization approaches for edge clouds, such as contain-
ers [4] and unikernels [5]. For example, European 5G-PPP
initiative investigates alternative container and unikernel ap-
proaches to be used for edge computing [6]. In our experience,
different container builds or unikernel flavors exhibit diverse
performance capabilities. For example, containers can achieve
a robust operation, while unikernels have rapid manipulation
capabilities, e.g., they can boot up just in ms, even with a
TCP SYN or DNS lookup request packet [7].

We argue that there is no single best virtualization solution
for edge clouds, but the choice depends on the particu-
lar requirements, suggesting that the selection of the most
appropriate approach should become an important overall
management and operation task. Furthermore, a number of
papers (e.g., [8], [9]) perform comparative evaluations of
different virtualization technologies, but, in our understanding,
none considers all basic tasks of edge cloud deployments,
including elasticity of service nodes and physical resources,
as well as service operation.

Here, we conduct a systematic experimental evaluation of
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alternative container and unikernel builds of exemplary web
services towards improving performance and adaptability of
edge clouds. We bring a number of novelties, including on:

• introducing a novel edge cloud experimentation environ-
ment, supporting load prediction and balancing, horizon-
tal and vertical elasticity, as well as common abstractions
and APIs over heterogeneous virtual resources;

• providing an extensive experimentation analysis of dif-
ferent lightweight virtualization options for edge clouds,
considering all basic edge cloud processes (i.e., resource
allocation, removal, service operation, horizontal and
vertical elasticity actions).

• presenting basic design guidelines of edge cloud orches-
tration systems, backed by our results and highlighted
through a relevant conceptual facility that supports con-
tainer and unikernel-based virtualization technologies as
well as alternative service node implementations, while
exploiting their diverse performance characteristics.

Our experimentation exercise was challenging, since it
required the implementation of a complete edge cloud or-
chestration solution that supports heterogeneous virtualiza-
tion choices, including the production-ready containers and
alternative experimental implementations of unikernel flavors,
often with bugs and instabilities. We required coding in many
environments, i.e., C, Python, NodeJS, OCaml, the implemen-
tation of a bespoke DNS server, as well as a number of non-
trivial OS, network, hypervisor and test-bed configurations.

The remainder of the paper is organized as follows. Section
II provides an overview of the related investigations. Sec-
tion III details our experimentation environment. Section IV
elaborates on our methodological approach and its relevant
assumptions. Section V provides our experimentation analysis
and produced insights, focusing on the deployment, removal,
operation and elasticity of edge cloud resources and services.
Section VI provides basic design guidelines for a novel edge
cloud orchestration system that benefits from our findings.
Finally, Section VII concludes the paper.

II. RELATED WORKS

Next-generation services call for network and cloud paradigms
that enable ultra-low latency or high-throughput communica-
tion and bring elasticity in the service operation. For example,
a number of approaches particularly focus on speeding-up
packet processing, including the novel in-kernel proposals
of extended Berkeley Packet Filter (eBPF) and Xpress Data
Path (XDP) [18]. Furthermore, the edge cloud infrastructure
StarlingX [19] targets at achieving ultra-low latency of net-
work services through operating on top of real-time linux,
employing Time-Sensitive Networking [20] capabilities.

Regarding the cloud viewpoint, 5G networks are gradually
employing virtualization [21] and edge cloud technologies
[22], as well as the microservice paradigm [23]. However,
edge clouds may be associated with limited resource avail-
ability or dynamic service demands or network conditions,
highlighting the need for flexible, lightweight virtualization
technologies [6] at the edge, being efficiently orchestrated.

The main candidates for lightweight virtualization in edge

clouds are containers and unikernels. Containers (e.g., Docker
[24] or LXC [25]) are standardized units implementing ap-
plication packaging with all of its dependencies, providing
robust performance and adaptability to dynamic application
requirements. Unikernels [5] (e.g., MirageOS [26], ClickOS
[27], RumpKernel [28], or OSv [29]) are single-purpose
appliances specialized at compile-time into standalone ker-
nels, characterized by very low resource usage and rapid
deployment capabilities, even at the range of ms [7].

Several studies conduct performance comparisons of alter-
native lightweight virtualization options, being suitable for
edge cloud deployments. An overview of such works is shown
in Table I, highlighting the aspects being evaluated (i.e., on
service operation and elasticity / fault-tolerance behavior),
the considered services, as well as the numbers and types
of contrasted virtualization options.

As enlisted in the Table, a number of considered works (i.e.,
[8] - [13]) assess the performance of alternative lightweight
virtualization technologies and focus on investigating service
operation aspects only. For example, the comparative analysis
[10] focuses mainly on server resource-efficiency aspects (i.e.,
memory footprint and network latency) and contrasts alterna-
tive unikernel flavors with containers hosting an Nginx web-
server or a Redis database. Most unikernel flavors perform at
least equally or better than containers, especially in cases that
require the transfer of unikernel or container images.

Other proposals consider both server resource-efficiency
and service performance. Paper [8] compares KVM VMs,
RumpKernel unikernels and docker containers hosting an
Apache web-server or a Redis database with different numbers
and sizes of requests. According to their results, containers
achieve the best performance, in terms of communication de-
lay and server resource utilization. Proposal [11] evaluates the
performance of a unikernel-based firewall service against cor-
responding container and Linux-based solutions, concluding
that the first option achieves a higher number of TCP requests
served per second and a lower network latency. Similarly,
paper [12] compares the network performance (i.e., requests
served per second and latency) of unikernels against linux-
based solutions offering both DNS and web-based services.

Furthermore, paper [13] evaluates the performance of
unikernels versus containers for the same REST service,
implemented in Java, Go, and Python. This study measures
memory consumption and execution / response times and
concludes that unikernels perform at least equally or outmatch
the corresponding containers, however, the former consumes
significantly more memory compared to the latter. Along the
same lines, the authors of [9] compare the HTTP and database
access performance of OSv, RumpKernel, MirageOS, and
IncludeOS unikernels as well as docker containers, reporting
a higher request rate in the case of containers, but a lower
latency when employing unikernels.

A number of proposals consider aspects of elasticity or
fault-tolerance processes. In [14], the authors compare KVM-
based VMs, Docker containers and OSv-based unikernels in
an OpenStack cloud platform, documenting that OSv outper-
forms the other virtualization technologies in terms of service
provisioning time. A Vehicle Ad-Hoc Network realizing a



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

TABLE I: Related works comparing alternative virtualization technologies that are suitable for edge cloud environments

Edge Cloud Aspects Service Type Number of
considered
container
technologies

Number of
considered
unikernel
technologies

Alternative
flavors of
the same
application

Service Operation Elasticity or Fault-tolerance
Server
Resource-
efficiency

Service
Perfor-
mance

Resource
Allocation
Time

Resource
Removal
Time

Server
Resource-
efficiency
Impact

Service
perfor-
mance
Impact

[10]
Web-service &
Database

2 2

[8]
Web-service &
Database

1 1

[11] Firewall 1 1

[12]
DNS & Web-
service

2

[13] HPC 1 1 3

[9]
Web-service &
Database

1 4 2

[14]
Virtual Entity
Instantiation

1 1

[15]
Network
Memory
Server

2 1

[16] Firewall 1 1
[17] Web-service 2 1
Ours Web-service 1 3 2

service migration scenario and utilizing KVM-based VMs,
both LXD and docker containers, as well as OSv-based
unikernels is considered in [15]. The same work assesses the
alternative virtualization options in terms of allocation time of
a simple Network Memory Server and demonstrate the lower
service allocation time of the unikernel option.

In our understanding, two of the related works consider both
service operation and elasticity, however taking into account
only the resource allocation aspect of the latter. In [16], the
authors conduct a performance comparison between unikernel
and container based implementations of a firewall, in the
context of a fault-tolerance scenario, reporting that containers
exhibit the best network performance (i.e., in terms of latency
and throughput) and service instantiation time. Paper [17]
compares a traditional VM with alternative container tech-
nologies and a unikernel-based implementation, all hosting a
web-service. The last option achieves the lower boot-up times
and higher network throughput, while the container option the
best CPU and memory consumption efficiency.

As we see in Table I, all the aforementioned studies con-
sider one or two virtualized network services (or application
functions) with the web-service being the most commonly
used, since it may represent a number of REST-based ser-
vices. We also observe that almost all of them investigate
containers, mostly docker, while three of them (i.e., [10],
[15] and [17]) consider alternative container virtualization
technologies. Furthermore, papers [9], [12] and [10] assess
different unikernel flavors, while works [9] and [13] consider
multiple implementations of the same application.

In summary, the relevant papers provide comparative eval-
uations of alternative lightweight virtualization technologies
with respect to service operation and/or assurance aspects.
However, the current paper is the only one that considers all
of these aspects, including virtualized service deployment and

removal times, as well as the impact of elasticity processes on
server resource-efficiency and service performance. In contrast
to the related works, our analysis (i) clearly targets the specific
context of edge clouds; (ii) focuses on all basic relevant ser-
vice and cloud operations; (iii) considers containers, multiple
unikernel flavors and implementations of the same service;
and (iv) targets to identify the performance trade-offs of
alternative lightweight virtualization options, so they can be
appropriately tuned, even by mixing multiple technologies.

III. EDGE CLOUD EXPERIMENTATION ENVIRONMENT

Here, we detail our experimentation infrastructure, including
its basic components and interactions.

Our edge cloud experimentation environment is investigat-
ing the proposed edge cloud paradigm and its core design
requirements, while demonstrating the following novelties:
(i) implements all basic edge cloud operations, including the
deployment, removal and operation of virtualized web-based
services; (ii) realizes web load prediction and balancing, as
well as both horizontal and vertical elasticity; (iii) employs
heterogeneous lightweight virtualization technologies as well
as different implementations of particular applications to
realize adaptability of real deployments in various circum-
stances, e.g., rapid changes in users requesting content or
resource availability; and (iv) is extendable to support new
services, virtualization technologies, orchestration workflows
and corresponding mechanisms.

Our experimentation facility (i.e., Fig. 1) comprises of three
node clusters: the centralized (i.e., purple colored), the edge
(i.e., blue colored), and the client nodes (i.e., green colored),
all residing at our SWN test-bed [30]. We detail the three
parts of our infrastructure and their basic components below,
as well as their basic interactions.

The centralized node accommodates the Service Orches-
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Fig. 1: Experimentation environment

trator, the Experiment Controller and the Service Repository.
The Service Orchestrator is implemented in Node-RED [31],
a modular programmable environment utilizing a browser-
based flow editor. As shown in the top of Fig. 1, it comprises
of three standalone components: (i) the DNS-based Load
Balancer; (ii) the Prediction Mechanism; and (iii) the Caching
Optimizer. A brief presentation of these components follows:

• The DNS-based Load Balancer realizes load balancing
over heterogeneous virtual resources, i.e., assigns client
requests to particular servers, in a round-robin fash-
ion. It supports heterogeneous virtual resources through
different IP subnets. For simplicity, the URL indicates
the content requested and the type of virtual resource.
It maintains a list of active nodes serving content in
cooperation with the Caching Optimizer, i.e., the latter
provides notifications on all additions or removals of
virtual resources. DNS-based Load Balancer is also
tracking the content requests over fixed time intervals,
i.e., 30 sec, in our case. Such information is the input of
the Prediction Mechanism.

• The Prediction Mechanism utilizes the client requests’
status from the previous component to predict the forth-
coming load, based on historical information it maintains.
Currently, we support two alternative load prediction
mechanisms, the Exponential Moving Average (EMA)
and the Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) [32]. EMA considers the recent measure-
ments as more significant and its formula is: EMAt =
2

n+1 ⇤Rt+(n�1
n+1 )⇤EMAt�1 (Rt expresses the current re-

quests’ value). SARIMA extends ARIMA to consider sea-
sonal trends, defined as SARIMA(p,d,q)(P,D,Q)m, where
the parameters in the first (i.e., p, d, q) and the second set
of brackets (i.e., P, D, Q) indicate the trend and seasonal
parameters (i.e., autoregression, difference, and moving
average orders), respectively. The mechanisms are imple-
mented as NodeRED modules, so it is straightforward to
introduce new models, however this paper is not focusing

on prediction aspects.
• The Caching Optimizer is responsible for controlling

the virtual resources, including determining the quantity
and location of resources to be deployed or removed,
depending on the input of Prediction Mechanism. In
our experimental analysis, we assume that each VM or
container can serve up to a fixed number of requests.
Consequently, the number of resources to be deployed
or removed is calculated from the Caching Optimizer
based on the estimation of the upcoming content requests
and the total existing capability of the edge nodes to
handle the web load, i.e., by subtracting the latter from
the former and then dividing the result by the above
fixed number. In case the result is negative or positive,
a scale up or down event is triggered, respectively.
The Caching Optimizer decides to deploy new service
entities to the servers with the lowest number or remove
existing ones from the nodes with the maximum number
of entities, i.e., due to the homogeneous hardware of
our test-bed servers. However, the Caching Optimizer
receives not only the status of virtual entities but also
recent resource allocation monitoring information from
all nodes, which could be the basis for more sophisticated
placement mechanisms. In case of a new deployment, it
first confirms that the new virtual resource is up and
running (i.e., through the Edge Service Operator) and
then communicates the new IP address to the DNS-
based Load Balancer. Whenever it removes an existing
resource, it first notifies the latter, so no new users request
content, waits for existing communication to complete,
and then removes the particular virtual entity.

The centralized node also accommodates the Experiment
Controller and the Service Repository. The former component
utilizes custom scripts specifying the configuration of exper-
iments (i.e., initiates cloud resources and client requests) and
collecting the results from both client and edge nodes through
the API interface. The latter stores, locates and communicates
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Fig. 2: Elasticity workflow

both unikernel and container images based on a common
Service Repository API for heterogeneous virtual resources.
It is built on top of a private Docker repository and a custom
script handling unikernel images. The repository is utilized
whenever a horizontal elasticity event is triggered, i.e., virtual
resources are being deployed in new edge nodes, otherwise
images are already hosted by the latter.

The second part of our facility contains the edge nodes’
cluster. Each edge node is equipped with an Edge Service
Operator and a Monitoring component. The former is a stan-
dalone software entity being responsible for the manipulation
and configuration of edge cloud resources. It uses a uniform
abstraction layer that hides the heterogeneity of virtualization
resources. For example, the Service Orchestrator commu-
nicates general requests to deploy virtual resources to the
Edge Service Operator, which in turn performs the follow-
ing tasks: (i) locates corresponding virtualization-technology-
specific APIs; (ii) identifies the location, i.e., being local or
remote, and the details of required images; (iii) allocates the
particular resources and assigns IPs to them; (iv) confirms
the completion of deployment through a frequent polling
process by requesting a tiny-sized content (i.e., every 0.1
sec); and (v) notifies the DNS-based Load Balancer upon the
completion of the operational task through the API. Finally,
the Monitoring component collects real-time data information
about the physical and virtual resources in terms of resource
availability and the status of edge cloud virtual resources.

The last part of our experimentation environment consists
of the client nodes hosting our benchmarking tools, a custom
multi-threaded workload generator tool being responsible for
emulating the clients’ behavior as well as assessing their
performance with different metrics.

In Fig. 1, we also highlight the basic connectivity among the
components of the experimentation facility. The centralized
node communicates with both edge and client nodes through
the API interface for orchestration, monitoring information
and experimentation control processes, e.g., the implementa-
tion of elasticity events or changes in the configuration of the
experiment.

For example, message exchange sequence diagram of Fig.
2 illustrates the interactions between the platform components
for the realization of an elasticity process. In this workflow,
DNS-based Load Balancer keeps track and notifies the Pre-
diction Mechanism for the status of content requests, which in
turn may request a scale up or down event from the Caching
Optimizer, i.e., through an Edge Service Operator. The latter
component downloads the required service image from the
Service Repository, in the case it is not available locally, and
then boots up and verifies a corresponding resource allocation
or removal process. The elasticity event completes with the
necessary configurations. Lastly, the Monitoring component
informs periodically the Caching Optimizer for the status of
cloud resources.

In the next section, we proceed describing our methodolog-
ical approach.

IV. METHODOLOGY AND ASSUMPTIONS

Here, we detail our methodological approach and provide the
relevant assumptions, including on the considered service and
virtualization technologies, networking aspects, as well as on
the metrics used and the statistical evaluation of our results.

In our investigation, we consider a service that resembles a
content delivery platform (e.g., distributing videos, music or
other content) or a microservice / network service that hosts a
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TABLE II: Association of considered metrics with related works’ categorization criteria

Edge Cloud Aspects
Service Operation Elasticity or Fault-tolerance

Metrics Server Resource-
efficiency

Service Performance Resource Allocation Resource Removal Server Impact Service Impact

Resource Allocation Time
Resource Removal Time
CPU Service and Infras-
tructure Utilization
CPU Peak
Response Time
Download Time
Total Delivery Time
Network Throughput

local database and transmits messages via a REST interface.
For simplicity, we deploy web servers able to transmit content
or messages of different sizes. We also assume that content is
embedded in the VMs or containers, so content size impacts
relevant image sizes. Web servers are typically used from
microservices and are also supported by all virtualization
approaches, e.g., even from unikernel flavors at their early
implementation stages, consequently serving as a good basis
for our comparisons.

Currently, the edge nodes support three common unikernel
options, i.e., ClickOS, RumpKernel, and MirageOS. We inte-
grated Nginx web servers to the first two, due to its relative
simplicity, high-performance and minimalistic size. We use
a simple OCaml-based web server for MirageOS, since it
does not support Nginx. Furthermore, we built two lightweight
Docker container images, the one hosting an Nginx web server
and the other the Flask Python web framework, i.e., to be
able to assess also the impact of web server type, marked
as C Nginx and C Flask, respectively. Table III illustrates
the VMs and containers’ image sizes we utilized in our
experiments, concerning the particular content cache sizes. In
our experiments, all unikernel and container technologies are
resource-limited to one vCPU and 256MB of RAM. We also
set the maximum number of content requests served by all
virtualization technologies as 20.

We are currently assuming content requests equally spread
among client nodes based on particular patterns and organized
in periodic batches. Due to space constraints, we left a more
thorough study on the impact of different user patterns on
the performance of the proposed paradigm as a future work,
since the current assumption suffices to highlight the particular
novelties identified in the paper.

We implement E2E communication between client and
edge nodes, which spans over both physical and virtual
networks. Each client retrieves content after looking up the
particular URL through the DNS-based Load Balancer, which
connects the client to an appropriate virtual server node. The
E2E path is configured through static routes generated by a
bespoke script and the virtual network is implemented through
both XEN and Docker bridging. For better performance, we
disabled the Spanning Tree Protocol (STP) in the virtual
network bridges. We also configure all network interfaces with
the traffic control (tc) tool to align the network configuration
with the scale of our experiments.

Furthermore, we extract measurements from both client

TABLE III: Image sizes of different virtualized services

Content C Nginx C Flask ClickOS RumpKernel MirageOS
1MB 22.5MB 85.2MB 6.2MB 34MB 13.4MB
5MB 26.5MB 89.2MB 9.4MB 37.8MB 16.7MB
10MB 31.5MB 94.2MB 14.6MB 42.6MB 20.6MB
20MB 41.5MB 104MB 24.5MB 52.1MB 26MB

and edge nodes on service fulfillment, service assurance and
communication performance, as summarized below:

• service fulfillment with the following metrics: (i) Re-
source Allocation Time is the total duration, in seconds,
required for the deployment of a VM or a container, i.e.,
the amount of time from the Service Orchestrator trig-
gering its deployment until it is ready to serve content;
and (ii) Resource Removal Time expressing the time in
seconds to remove a VM or container.

• the service assurance metrics applied here are: (i) CPU
Service and Infrastructure Utilization measuring the CPU
utilization of VM or container providing the service
and of the edge node, respectively; and (ii) CPU Peak
quantifying the highest point in CPU utilization in the
life-span of the corresponding task, i.e., focusing on
worst-case CPU utilization.

• communication performance with the metrics: (i) Re-
sponse Time expressing the time, in seconds, passed
from the client request to the receipt of the first byte
of the response; (ii) Download Time representing the
total duration, in seconds, required for the transfer of
content to the client; (iii) Total Delivery Time reflecting
the aggregation of Response with Download Time; and
(iv) Network Throughput which is the ratio of transmitted
data to download time, in MB/s;

Service fulfillment and assurance performance metrics are
tightly associated with the service lifecycle that ensures
utilizing the necessary resources and maintaining service
quality, i.e., also reflected in the communication performance,
focusing on the content delivery aspect, in our case. We use
a different categorization for the metrics from the considered
edge cloud operations, since some metrics are used to assess
more than one operation. For clarity, in Table II we associate
the considered metrics with the categorization criteria of our
related works investigation, as presented in Table I.

Finally, we evaluate our results’ statistical accuracy by
executing each experiment for an indicated number of times
that produces low standard deviations between the replicated
runs. All provided figures represent the average values over
these runs as histogram plots. For simplicity, we provide the
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upper bounds of the associated standard deviations, whilst in
particular cases, i.e., further supporting the statistical accuracy
of our findings, we illustrate our results as box plots that
provide supplementary statistical information, such as mean,
median, outliers, lower and upper quartiles. Next section pro-
vides our experimental analysis that is based on the presented
experimentation platform and the discussed methodology.

V. EXPERIMENTATION RESULTS

In this section, we validate the main concepts behind the
proposed edge cloud paradigm, including the utilization of
lightweight and heterogeneous virtual resources, as well as
identify strategies for efficient resource allocation and service
performance. Our analysis is organized into three scenarios
covering essential edge cloud processes: (i) the Deployment
and Demobilization scenario assessing the deployment and
removal of diverse virtualized service entities; (ii) the Service
Operation scenario quantifying the content delivery perfor-
mance of alternative unikernel flavors, containers and web
server technologies; and (iii) the Elasticity scenario consider-
ing a complete elasticity workflow that involves the prediction
of client demands and a proactive strategy deploying content
at the edge cloud. We measure service assurance in all sce-
narios, service fulfillment in the first one and communication
performance in the other two. Our results and produced
insights follow.

A. Scenario 1: Deployment and Demobilization
In the first scenario, we assess the individual performance

characteristics of diverse virtualization and web server tech-
nologies during their deployment or removal, while ranging
content size from 1 to 20MB, i.e., impacting VM or container
image sizes. We deploy and remove one virtual resource at a
time and wait for 3 minutes between different deployments,
i.e., to cool off the CPU. We validated the statistical accuracy
of our results by replicating each experiment 30 times.

The scenario includes the following two groups of results
on (i) vertical involvement of cloud resources, assuming the
existence of unikernel or container images for the service
provisioning, at allocated physical servers; and (ii) horizontal
involvement of cloud resources, representing the outcome of a
horizontal elasticity process allocating new physical resources
that should also download service images from the Service
Repository, residing at the centralized node, i.e., assuming that
new resources are available instantly. The resource allocation
and removal processes concern the booting up or removal of
both corresponding virtual entities and web servers.

In the case of vertical involvement of cloud resources
(i.e., Fig. 3), ClickOS outperforms other approaches in terms
of Resource Allocation Time, succeeded by C Nginx (i.e.,
Fig. 3(a)). For example, ClickOS, in the best case (i.e., of
1MB), can be deployed 4.6 times faster than MirageOS,
while in the worst case (i.e., of 20MB) achieves around 15%
lower Resource Allocation Time from C Nginx. The improve-
ment ratio of ClickOS is slightly canceled as the content
size increases, besides the comparison with RumpKernel. In
all circumstances, MirageOS faces the worst performance,

however, associated with the most efficient CPU utilization
(i.e, Fig. 3(b)). We also notice that Resource Allocation Time
of MirageOS is not affected by content size. The lowest
CPU Peak value of MirageOS can be justified from its
prolonged boot time. We also see in Fig. 3(b) a CPU Peak
difference between unikernels and containers ranging between
1% and 8%, in favor of unikernels. MirageOS and ClickOS
have an almost steady increase of CPU Peak per content
size increment, while in the other options appears a more
fluctuated behavior. The standard deviation between the runs
regarding the Resource Allocation Time and CPU Peak does
not exceed the value of 0.19 and 0.36, respectively in all cases.

In Fig. 3(c), we depict the Resource Removal Time with an
equivalent experiment to the above. We see that such metric
is not influenced by the content size, in all virtualization and
web server options. Furthermore, all unikernel flavors can be
removed at almost zero time, highlighting their significant
performance advantages in scaling down processes. Fig. 3(d)
illustrates as a box plot the associated CPU Peak values with
the resource removal process. We observe a few outlier values,
mostly in the case of ClickOS, and mean / median values
that are roughly similar. The results appear symmetrically dis-
tributed in all virtualization options, where MirageOS prevails
with lower CPU Peak values for 5 to 20MB content sizes.
Complementary, we observe that unikernels are approximately
characterized by 1% to 4% lower mean CPU Peak values,
compared to container options, mainly caused by their more
lightweight processes.

Regarding the horizontal involvement of cloud resources,
we observe that ClickOS achieves overally the best perfor-
mance for all content sizes, in terms of Resource Allocation
Time (Fig. 4(a)). For example, ClickOS is characterized by
a 3.7 times lower boot-up time compared to C Flask, in the
best case (i.e., with 1MB content), while RumpKernel attains
close results (i.e., the 91%) with a 10MB content size. We
also notice a symmetrical distribution of results with ClickOS
being associated with a higher variability (i.e., with 1 and 5
MB content), i.e., reflected in a inter-quartile range around 2.
We also notice a steady improvement ratio reduction with
the gradual increase of content size, i.e., when comparing
ClickOS with all other solutions besides Rumpkernel. The
standard deviations of results on Resource Allocation Time
do not exceed value 0.92.

Furthermore, as shown in Fig 4(b), MirageOS contributes
to a lower CPU Peak, in each case. This can be justified
again due to the prolonged booting up time of MirageOS.
Additionally, the high CPU Peak of C Flask may be attributed
to its large image size. We also observe that unikernels
are more resource-efficient than containers in terms of CPU
utilization, as reflected in their at least 20% lower CPU
Peak values. This difference is much higher than the case of
vertical involvement of resources and is attributed to the CPU
consumption required for the image downloading process.
We also notice an almost steady increase in CPU Peak
with content size, for all virtualization cases. The standard
deviation of CPU Peak values ranges from 0.6 to 1.5.

Here, we see that VM or container image download time
impacts these results, gradually canceling the advantages of
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Fig. 3: Service fulfillment of alternative virtualized services - vertical involvement of cloud resources

tiny VM sizes (or virtualization solutions with rapid boot up
times) as content size increases, i.e., with content that is either
embedded or downloaded together with the images.

As we show in Fig. 4, the Resource Removal Time has an
almost identical behavior as in Fig. 3(c), highlighting once
more the significant performance advantages of unikernels in
scaling down processes. Furthermore, RumpKernel is char-
acterized by the lowest CPU Peak value (i.e., Fig. 4(d)) for
removing resources with lower-sized content, while MirageOS
slightly outperforms RumpKernel for larger-sized content. We
also note that all unikernel options have equivalent CPU Peak
values, which are independent of the content size, while CPU
Peak in containers marginally oscillates. Complementary, we
observe that unikernels achieve up to 6% lower CPU Peak
values compared to containers. This could be attributed to
the different shutting down processes between Docker and
XEN, rather than to the content size. In overall, the standard
deviations of Resource Removal Time and CPU Peak do not
exceed the values of 0.01 and 1.1, respectively.

Here, we summarize our findings from the first scenario:
(i) both unikernel and container-based options can be quickly
manipulated in the context of a vertical involvement of cloud
resources, with ClickOS achieving the best resource allocation
time (i.e., at least 15% lower in contrast to C Nginx); (ii)
unikernel options consume around 1% to 8% less CPU
resources during their deployment compared to containers,
with MirageOS consuming at least 3% and 6% lower CPU
resources in contrast to other unikernel flavors and containers,
respectively; (iii) for horizontal elasticity allocation processes,

the required image downloading brings further advantages to
unikernels with respect to containers, in terms of CPU Peak
and Resource Allocation Time, due to their tiny sizes, e.g.,
MirageOS achieves an at least 31% lower CPU Peak value
and ClickOS boots-up at least 1.35 times faster from C Nginx,
respectively, however these are gradually canceled with the
content size; (iv) in both vertical and horizontal involvement
of cloud resources all unikernel options can be instantly
removed, i.e., in 0.01 sec, independently of the content size,
while achieve up to 6% lower CPU Peak values compared to
containers.

B. Scenario 2: Service Operation

In the second scenario, we evaluate the operation of the
assumed content delivery service in terms of resource ef-
ficiency and performance with all considered virtualization
and web server options, despite MirageOS. We omitted the
latter for two reasons: it did not perform well in the pre-
vious scenario and it faced stability issues. We also ranged
the content sizes from 1 to 20MB. 10 replications of the
runs sufficed for statistically accurate results. In the case of
Response and Download Times, we calculate their standard
deviation among different batches rather than of individual
client requests, since they exhibit relatively high fluctuations
due to the network. All metrics have an equivalent behavior
for 5MB, 10MB and 20MB content. For this reason and due
to space constraints, we omitted the 5MB and 10MB results
for Network Throughput and CPU Peak.
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Fig. 4: Service fulfillment of alternative virtualized services - horizontal involvement of cloud resources
FiPe EdiX Vie[ ObNecX ShaTe TSSPW PaRePW HePT Install \ro

1 5 10 15 20 25 30
NXPbeU Rf COieQWV

0

5

10

15

20

25

30

35

40

45

0.12 0.21 0.09 0.11 0.11 0.49 0.15 0.15 0.17 0.74 0.28 0.21 0.55 0.89 0.48 0.30 0.80 1.08 0.51 0.31 0.95 1.12 0.50 0.35 1.06 1.20 0.65 0.40

COickOS
RXPSKeUQeO
C_NgiQ[
C_FOaVk

TR
Wa

O D
eO

iY
eU

\ 
Ti

P
e 

(V
ec

)

SVG GVSYT GVSYT

(a) Clients’ Total Delivery Time with content size 1MB

FiPe EdiX Vie[ ObNecX ShaTe TSSPW PaRePW HePT Install \ro

1 5 10 15 20 25 30
NXPbeU Rf COieQWV

0

5

10

15

20

25

30

35

40

45

TR
Wa

O D
eO

iY
eU

\ 
Ti

P
e 

(V
ec

)

0.44
1.29

2.68
3.89

5.63
7.03

8.71

0.74
1.65

2.65
4.18

5.59
7.21

8.769.18

0.42 1.15
2.64

4.53
6.02

7.69

0.45 0.89 1.67
2.70

3.74
4.69

5.60

COickOS
RXPSKeUQeO
C_NgiQ[
C_FOaVk

SVG GVSYT GVSYT

(b) Clients’ Total Delivery Time with content size 5MB
FiPe EdiX Vie[ ObNecX ShaTe TSSPW PaRePW HePT Install \ro

1 5 10 15 20 25 30
NXPbeU Rf COieQWV

0

5

10

15

20

25

30

35

40

45

TR
Wa

O D
eO

iY
eU

\ 
Ti

P
e 

(V
ec

)

2.79

5.64

9.02

12.2

15.3

18.2

2.65

5.87

9.14

12.6

16.0

19.1

2.67

6.26

9.87

13.2

16.4

19.6

1.99
3.98

6.01
8.02

10.0
12.0

0.861.06 0.84 0.88

COickOS
RXPSKeUQeO
C_NgiQ[
C_FOaVk

SVG GVSYT GVSYT

(c) Clients’ Total Delivery Time with content size 10MB

FiPe EdiX Vie[ ObNecX ShaTe TSSPW PaRePW HePT Install \ro

1 5 10 15 20 25 30
NXPbeU Rf COieQWV

0

5

10

15

20

25

30

35

40

45

2.79

5.64

9.02

12.2

15.3

18.2

2.65

5.87

9.14

12.6

16.0

19.1

2.67

6.26

9.87

13.2

16.4

19.6

3.98
6.01

8.02
10.0

12.0

0.861.06 0.84 0.88

COickOS
RXPSKeUQeO
C_NgiQ[
C_FOaVk

1 5 10 15 20 25 30
NXPbeU Rf COieQWV

0

5

10

15

20

25

30

35

40

45

TR
Wa

O D
eO

iY
eU

\ 
Ti

P
e 

(V
ec

)

37.8

1.71

12.5

19.2

25.4

31.7

1.80

6.41

13.0

20.0

26.8

33.5

1.68

6.65

13.5

20.7

27.2

33.9

1.71

4.50

8.60

12.6

16.6

20.7

24.8

6.31

40.5 40.6

COickOS
RXPSKeUQeO
C_NgiQ[
C_FOaVk

SVG GVSYT GVSYT GVSYT

(d) Clients’ Total Delivery Time with content size 20MB

Fig. 5: Communication performance - Total Delivery Time as Response (light colored) plus Download Time (dark colored)
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Fig. 6: Communication performance - Throughput
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Fig. 7: Service assurance - CPU Peak

In Fig. 5, we observe that, in general, C Flask outperforms
other approaches in terms of Total Delivery Time, succeeding
by ClickOS, RumpKernel, and C Nginx. The same perfor-
mance order is detected in the majority of cases, i.e., between
10 to 30 clients and for content sizes 5, 10 and 20MB.
In the same figure, we notice an almost steady increase of
Total Delivery Time with the number of client requests. For
example, such increments for 5MB to 10MB or 10MB to
20MB range from 1.4 to 2.4 times, for all approaches.

From an analysis of Total Delivery Time and its constituting
Response and Download Times, we see that: (i) Response
Time is independent of content size and the number of client
requests for ClickOS, RumpKernel and C Nginx, which does
not exceed value 0.06 sec; and (ii) C Flask Response Time
increases with content size and the number of client re-
quests, but with an almost non-fluctuating behavior regarding
Download Time, which is not the case in the other solutions.
This attitude can be justified by the different approaches of
Nginx and Flask web servers in terms of requests’ handling.
Practically, we use the simplistic web server integrated with
Flask, which struggles to handle all client requests (i.e., also
reflected a high CPU Peak value, as shown in Fig. 7), however
leading to a better Download Time because it desynchronizes
the parallel web requests. The standard deviation values for
Download and Response Time range from 0.004 to 1.65 and
0.003 to 0.21, respectively, i.e., causing borderline differences
between the third and fourth-placed approaches only.

As depicted in Fig. 6, in the majority of runs, C Flask
achieves the higher Network Throughput per client. We iden-
tify an almost resembled performance pattern among Total
Delivery time and Network Throughput, i.e., due to the signif-
icance of the networking aspect in the considered application.
The figure also indicates a decline of Network Throughput
with client requests’ number, but with higher fluctuations,
compared to Total Delivery Time’s, i.e., around 6% to 73%
and 9% to 69%, for C Nginx and ClickOS, respectively. The
standard deviation of Network Throughput ranges from 0.07
to 3.83, but without impacting the above arguments.

In Fig. 7(a) and 7(b), we see that in most cases C Nginx
outmatches the other solutions in terms of lowest CPU Peak,
i.e., at least by 8% to 10%. However, in all circumstances
C Flask faces the highest CPU Peak value and the greatest
variability, highlighting that web service technology mattered
more for CPU Peak than the virtualization technology, since
both C Nginx and C Flask use containers. We also see a
diverging behavior between unikernels and containers. For
containers, CPU Peak values are increased until a particular
value and then fluctuate, approximately, 48% to 50% and
7% to 8% for C Flask and C Nginx, respectively. Moreover,
we see that CPU Peak increases more rapidly with a lower
number of requests, as content size increases. Such attitude
of C Flask relates to its struggle to cope with high loads.
Regarding unikernels, there is an increasing trend in CPU
Peak, i.e., its increase ratio is gradually being reduced with
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the number of requests. The standard deviation of CPU Peak
fluctuates from 0.04 to 9.34, without affecting the performance
differences in each individual case.

We now summarize our findings as follows: (i) C Flask
achieves the best performance in terms of Total Delivery
Time by distributing the content up to 3.4 times faster and
consuming 3.18 times more Network Throughput, compared
to RumpKernel, but it faces up to 40.7% higher CPU Peak
values, in contrast to ClickOS, which aspect is important,
especially for resource-constraint edge cloud deployments; (ii)
ClickOS and C Nginx are descent options for the operation
of considered content delivery service, with the former being,
in general, characterized by the best Total Delivery Time and
Network Throughput, while the latter by the lower CPU Peak
values; (iii) unikernels, compared to containers, have a more
stable increasing of CPU utilization with clients’ number, e.g.,
offering better conditions for a relevant prediction algorithm;
and (iv) the web service technology used matters, especially
for CPU resource consumption, with a CPU Peak difference
between C Nginx and C Flask reaching up to 43%, in favor
of the former.

C. Scenario 3: Elasticity

After evaluating the behavior of heterogeneous virtualized
web-based service entities on the basic edge cloud processes
of resource allocation, removal and operation, we now as-
sess their performance in a complete cloud environment,
i.e., involving both core and cloud resources as well as
scale up and scale down events triggered from predicted
demands. We reproduce a cycled user pattern in the form of
{100, 100, 100, 100, 100, 100, 100, 20, 20, 20, ...}, assuming a
periodic rapid shift on client demands, alternating between
high and low numbers of requests. Since the first two scenarios
revealed that C Flask achieves the lower Total Delivery Time
in service operation but with a high CPU Peak and ClickOS
very low Resource Allocation Time and CPU Peak, it comes
natural to utilize the former technology at the core cloud
and the latter at the edge. To evaluate the efficiency of this
strategy, we contrast the performance of this setting against
an equivalent one with C Flask instead of ClickOS.

In practical terms, the core cloud solely serves the users up
to points with rapid demand shifts. At these particular times,
there is a rapid deployment of service nodes at the edge cloud,
which are removed when the demand drops. Such elasticity
events are guided from the assumption that each involved web
server handles up to 20 requests, i.e., resources are being
deployed for every 20 requests. For example, 100 clients
should ideally utilize a C Flask container at the core cloud
and four edge nodes, i.e., either with ClickOS or C Flask.
However, this depends on the accuracy of the load prediction.
The content size for the elasticity experiments is 5MB.

Our test environment assumes both an accurate and a
moderate prediction mechanism, i.e., based on Seasonal Au-
toregressive Integrated Moving Average (SARIMA) and Ex-
ponential Moving Average (EMA), respectively, so we also
investigate the impact of demand prediction accuracy on both
service fulfillment and assurance. Here, we do not focus on

the prediction technology, rather than on its importance in the
studied context. For the same reason, SARIMA is selected as
a model that perfectly predicts the considered user pattern.
According to our stepwise validation scheme based on the
root mean squared error (RMSE), the obtained parameters
are SARIMA(0,1,0)(0,1,0)10. The first user pattern cycle does
not produce a response of the system, since it is used for the
training of prediction mechanisms. Finally, we set parameter
n equal to 3 in the EMA formula, i.e., takes into account the
last three inputs.

We have two sets of results, assuming both high (i.e.,
100Mbps) and low (i.e., 10Mbps) bandwidth between edge
nodes and centralized node, i.e., to evaluate the impact of
network capabilities for service orchestration. Our goal is
to assess both adequate and limited network resources, for
the scale of our experiment, so we can get an indication
whether the evolution of networking technology suffices (e.g.,
improving bandwidth) or strategies like the proposed should
complement the latter, for the best outcome. In both cases,
users request and download content over 200Mbps connec-
tions.

For clarity purposes, we depict the CPU Infrastructure
Utilization figures with (i) indicative core and edge cloud
nodes, since the visualization of all nodes produces a complex
outcome, because the orchestration processes are not perfectly
synchronized among the nodes; (ii) top and down subplots
presenting the performance outcomes when using C Flask
and ClickOS at the edge nodes, respectively; and (iii) the
cycled user pattern is visualized for one user batch sooner for
SARIMA only (i.e., in Fig. 8(d) and 9(d)), so the impact of
accurate prediction on CPU Infrastructure Utilization can be
illustrated more clearly.

We start with the cluster of results assuming a high-
bandwidth service orchestration. As expected, the involvement
of edge cloud resources improves significantly the Total
Delivery Time, i.e., as shown in Fig. 8(a) and 8(b). In the same
figures, we observe that, independently of the load prediction
strategy, ClickOS overally responds more rapidly compared
to C Flask, however C Flask outmatches ClickOS in terms
of Total Delivery Time, once the new edge cloud resources
have been deployed. We also notice that EMA, compared to
SARIMA, leads to further delays in the response of the system
to the initial increased number of requests (switching from
the 20 users of the training cycle to the 100 users of the
regular cycle), i.e., takes one more round of users to respond.
This first round is characterized by an equivalently high
Total Delivery Time for the three approaches, indicating zero
deployed edge cloud resources. The combination of accurate
load prediction of SARIMA and rapid allocation capabilities
of ClickOS leads to a very low Total Delivery Time, for all
cases. It takes for C Flask and SARIMA one round to respond
to the high load, due to the less rapid resource allocation of
the former, compared to ClickOS. Fig. 8(a) also highlights
that EMA needs more rounds to predict load, leading to over-
provisioning of resources in the last three user rounds, due to
the associated gradual demobilization of resources.

In Fig. 8(c) and 8(d), we notice the following: (i) ClickOS
consumes less CPU resources compared to C Flask for both
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Fig. 8: Horizontal elasticity with 100Mbps bandwidth for service orchestration
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Fig. 9: Horizontal elasticity with 10Mbps bandwidth for service orchestration

allocation (i.e., about 30% and 35% less in EMA and SARIMA,
respectively) and removal (i.e, 20% and 35% less in EMA

and SARIMA, respectively) of new resources, both in terms
of CPU Peak and duration of CPU involvement; (ii) EMA
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leads to a gradual response to the load changes, due to its
slow prediction, while SARIMA responds rapidly, i.e., the
latter allocates and removes resources almost 25 and 30
seconds sooner, corresponding to the first round of responses
in the system, respectively; and (iii) the over-provisioning of
resources due to inaccurate prediction from EMA is reflected
to the lower CPU Infrastructure Utilization of core cloud
towards the end of the corresponding figure curve, i.e., after
the 210 sec of Fig. 8(c).

In the case of low bandwidth in service orchestration, there
is an extension in image downloading time for the allocation
of new virtual resources during the required vertical elasticity
events, which is expected to impact the larger virtual entity
sizes more. This behavior is manifested in the content delivery,
since ClickOS is now allocated for the third user batch and
C Flask for the fifth, in the case of EMA (i.e., Fig. 9(a)).
However, the accurate load prediction of SARIMA impacts
marginally ClickOS, since it is ready to serve some users
from the 2nd user batch (i.e., Fig. 9(b)). Consequently, the
rapid booting up and small image size of ClickOS lead to
a partial mitigation of performance issues caused by limited
network resources in service orchestration.

An equivalent behavior can be seen in the CPU Infras-
tructure Utilization (i.e., Fig. 9(c) and 9(d)), where it takes
more time for C Flask to appear at the edge cloud and serve
users, i.e., boots up almost 75 and 65 sec after ClickOS is
up, for EMA and SARIMA, respectively. Such delay leads to
an impact of around 30% to 40% on the core cloud’s CPU
Utilization, since resources are offloaded to the edge at a later
stage. Things are better for resource removal, since there is no
need to download images. Contrasting the impact of the two
load prediction approaches on CPU Infrastructure Utilization,
SARIMA leads to both sooner resource allocation and removal.

We now summarize our findings from the third scenario: (i)
unikernels bring significant benefits in terms of responsiveness
to rapid changes in the web load, e.g., ClickOS appears at
the edge cloud and starts serving users up to 75 sec sooner
than C Flask; (ii) ClickOS is characterized by up to 40%
and 35% lower CPU Peak values with respect to C Flask,
i.e., corresponding to the resource allocation and removal pro-
cesses, respectively; (iii) inaccurate load prediction may lead
to both over-provisioning or under-provisioning of resources,
with SARIMA responding up to 25 and 30 sec earlier, in
the respective instances of resource allocation and removal,
compared to EMA, but such issues are more severe with
containers, i.e., the system re-adjusts itself in a slower manner.

VI. DESIGN GUIDELINES FOR EDGE CLOUD SYSTEMS

The general deployment of computing facilities in telecom
networks is introducing new challenges on their management,
control and operation. Apart from interaction and integration
with the underlying transport network [33], or the proper
selection of the compute environment for deploying a given
service [34], there are additional aspects of relevance to
take into consideration, especially the possible virtualization
approach [6] to follow, according to the network and service
circumstances. This is even more evident with the general
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Fig. 10: Conceptual edge cloud orchestration platform

adoption of cloud-native approaches by different technological
paradigms, in support of virtualized services [21] – [23].

In this context, we build-up on our research results towards
providing design directions for 5G and beyond edge cloud
infrastructures, which are aligned to the conceptual edge
cloud platform illustrated in Fig. 10. The latter operates
over multiple edge cloud Points of Presences (Edge PoPs),
as well as a core cloud deployment (i.e., a next-generation
central office - NGCO). A centralized orchestrator manages
all network, compute and storage resources as well as service
nodes, through Edge PoP managers that are deployed in
every edge cloud. The traffic load is balanced between the
Edge PoPs through a load balancer controlled from the same
orchestrator. The platform supports alternative virtualization
approaches and relevant packet processing optimization mech-
anisms, as well as implementations of particular application
functions (AF) and virtual network functions (VNFs), i.e.,
exhibiting diverse performance trade-offs. The orchestrator
receives service requirements through a Northern Interface
(e.g., like in NECOS platform [35]), selects and configures the
most appropriate virtualization technologies, mechanisms and
service nodes, i.e., to deliver the service with the expressed
performance requirements.

As a bottom line, we envisage the following capabilities
for our conceptual platform and other relevant systems: (i) a
virtual resource abstraction layer that supports multiple virtu-
alization technologies and relevant features (e.g., containers
and unikernels, eBPF, XDP [18], etc.); (ii) abstract well-
design APIs translating uniform primitives to technology-
specific compute and network control processes; (iii) intel-
ligent optimization mechanisms selecting and configuring the
most suitable virtualization technologies and service nodes to
particular service requirements and network conditions, e.g.,
targeting ultra-low latency; (iv) novel Artificial Intelligence
and Machine Learning (AI/ML) capabilities enabling automa-
tion processes, including for fluid elasticity [36] and efficient
resource allocation, scaling, load balancing / workload as-
signment; (v) a monitoring abstraction that provides a global
picture to a centralized orchestrator, i.e., of virtual resources,
network conditions and client behavior, backed by accurate
prediction or rapid detection mechanisms; (vi) lightweight and
high-performing service orchestration processes and interac-
tions of involved components, adaptable to expressed service
requirements; (vii) edge PoP managers being responsible for
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the control of virtualized network and application functions
in the edge infrastructures, coordinated by the centralized or-
chestrator; (viii) local VNF/AF repositories hosting alternative
implementations of particular virtual network or application
functions with multiple virtualization technologies; and (ix)
a service catalog enlisting available services, along with a
description of the deployment, operational and performance
characteristics of their constituting virtual network and appli-
cation functions.

VII. CONCLUSIONS

In the context of this paper, we conducted an extensive
comparative evaluation of alternative builds of virtualized
exemplary web-services, involving both unikernels and con-
tainers, and identified that each option is characterized by
particular performance trade-offs. Our experiments utilized a
novel bespoke edge cloud experimentation infrastructure that
considers virtualized service deployment, removal, operation,
as well as both vertical and horizontal elasticity processes. We
consolidated the gained insights from our realistic experiments
and defined a conceptual edge cloud orchestration platform for
5G and beyond networks with its key design guidelines.

Our next steps include the design, implementation and
extensive experimentation of the envisioned edge cloud or-
chestration platform (i.e., of Fig. 10), equipped with an archi-
tecture and mechanisms in adherence to the defined design
guidelines.

Furthermore, we plan to extend our experimentation ex-
ercise and research towards (i) investigating the impact of
different network or application services (e.g., video stream-
ing), other hypervisors and heterogeneous server hardware;
(ii) consider large-scale deployments over open-access test-
beds (e.g., FED4FIRE+ FUTEBOL [37] or GENI Emulab
[38]) and simulation tools (e.g., [39]); (iii) assessing NFV
orchestration capabilities, such as those proposed in [40],
[41], mixing and matching, as well as configuring, alternative
virtualized service node builds with respect to performance
goals / guarantees or dynamic changes in the conditions of the
cloud or network environment; (iv) integrating and evaluating
important virtual network optimization mechanisms, such as
eBPF and XDP; and (v) applying appropriate prediction
and rapid detection mechanisms on the workload behavior,
including employing the change-point analysis algorithms
introduced in [42].

Last but not least, we are especially interested to integrate
the core ideas of this paper in the novel edge cloud infras-
tructure StarlingX [19], exploiting its complementary unique
edge cloud orchestration capabilities.
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