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Abstract—Software-defined networking (SDN) is a promising
technology to overcome many challenges in wireless sensor
networks (WSN), particularly with respect to flexibility and
reuse. Conversely, the centralization and the planes’ separation
turn SDNs vulnerable to new security threats in the general
context of distributed denial of service (DDoS) attacks. State-
of-the-art approaches to identify DDoS do not always take into
consideration restrictions in typical WSNs e.g., computational
complexity and power constraints, while further performance
improvement is always a target. The objective of this work is to
propose a lightweight but very efficient DDoS attack detection
approach using change point analysis. Our approach has a high
detection rate and linear complexity, so that it is suitable for
WSNs. We demonstrate the performance of our detector in
software-defined WSNs of 36 and 100 nodes with varying attack
intensity (the number of attackers ranges from 5% to 20% of
nodes). We use change point detectors to monitor anomalies
in two metrics: the data packets delivery rate and the control
packets overhead. Our results show that with increasing intensity
of attack, our approach can achieve a detection rate close to
100% and that the type of attack can also be inferred.

Index Terms—Software-defined networking, intrusion detec-
tion, wireless sensor networks

I. INTRODUCTION

Software-defined networking (SDN) is a paradigm that was

devised to simplify network management, avoid configuration

errors and automate infrastructure sharing in wired networks

[1]. The aforementioned benefits motivated the discussion of

combining SDN and wireless sensor networks (WSNs) as a

solution to many WSN challenges, in particular concerning

flexibility and resource reuse [2]. This combination is referred

to as software-defined wireless sensor networks (SDWSN).

The SDWSN approach decouples the control plane from the

data plane and centralizes the control decisions; its main

characteristic is the ability to program the network operation

dynamically [3] [4]. Recent results show that SDWSNs can

perform as well as RPL [5].

On the other hand, the SDN centralization and the planes’

separation turn the network vulnerable to new security threats

(explained in Section II-A), a property that is inadvertently

passed on to SDWSNs. Shielding SDNs from these vulnera-

bilities has already attracted a lot of attention in the literature.

There are proposals to implement attack detection in Internet

of things (IoT) networks using SDN. Sankar and Gurusamy

[6] proposed softhings, an SDN-based IoT framework with

security support. The framework was developed for OpenFlow

[3], which however, limits its use in networks composed of

low-end nodes. The use of support vector machines (SVM)

was proposed to detect control plane attacks; it was shown that

a detection rate of around 96% and 98% could be achieved.

The algorithm was tested in Mininet, simulating scenarios

with only five 5 nodes and considering one node as attacker.

Yin et al. [7] developed the framework SD-IoT, which

includes a security system for DDoS attacks detection, based

on the difference of packets received by the controller. The

difference is calculated using the cosine similarity method.

This mechanism was devised for networks where all the nodes

have periodic communication with the controller, which could

be not optimal for very “restricted” networks with low-end

nodes. Authors tested their proposal through simulations using

Mininet. The network size is not explicitly specified, but is

inferred to be around 50 to 60 nodes.

Overall, in the case of SDWSNs, due to the resource

constraints of the nodes, most of the security mechanisms

designed for non-resource constrained SDNs have to be

adapted or redesigned. This is one of the major challenges

for SDWSN security. Wang et al. [8] proposed an SDWSN

trust management and routing mechanism. They compared

their proposal to SDN-WISE when both networks are under

attack. The focus of the work is on the selective forwarding

attacks and new flow requests. The first attack applies to any

type of WSNs, while the second is specific to SDN. The

mechanism was tested in simulations with 100 nodes, varying

the number of attackers between 5 and 20. Their results show

an attack detection rate between 90% and 96% when 5 nodes

are attackers, and between 60% and 79% when 20 nodes are

attackers.

Considering the limitations of previous works, our main

objective is to propose a mechanism for DDoS detection with,

i) a high detection rate, and, ii) low complexity, so that it

would be suitable for “restricted” networks. To this end, we

propose the employment of change of point analysis [9] [10].

We study two DDoS attacks: a false data flow forwarding

(FDFF) attack, and a false neighbor information (FNI) attack,

chosen to illustrate the proposed algorithm’s capabilities in

the case of specific SDWSN vulnerabilities that exhibit largely

different behavior. Both attacks are explained in Section II-A.

We have tested our approach on the IT-SDN framework [5]



and our results show that we can detect these attacks with a

detection rate close to 100%, improving the state of the art;

importantly, it is further possible to gain insight regarding

the type of the attack, based on the metric that provides the

quickest detection, a feature, that to the best of our knowledge,

breaks new ground in the domain of DDoS analysis for

SDWSNs.

II. IMPACT OF DDOS ATTACKS IN SDWSNS

A. SDWSN security analysis

The SDN networks security threats are grouped in three

sets [11]: application plane attacks, control plane attacks,

and data plane attacks. Among the three, the control plane

attacks are pointed out as the most high impact and attractive

[11] [12], as the control plane is responsible for the overall

management of the network [13]. This characteristic turns the

control plane prone to distributed denial of service (DDoS)

attacks. For example, an intruder may flood the network with

flow rule requests, which could lead to an exhaustion of the

controller’s resources. This attack can be intensified using

multiple intruders.

The threats and vulnerabilities explained before also apply

to SDWSN. Moreover, there are specific attacks that can attain

SDWSNs due to resources constraints, for example: in SD-

WSN the forwarding devices have low storage capacity, which

limits the memory assigned for flow tables and buffers. These

constraints make the forwarding devices prone to saturation

attacks. Also, SDWSN networks are characterized for having

a limited bandwidth and low processing power. This means

that a saturation attack can also result in a DoS attack.

Another vulnerability concerns the gateway between the

SDN controller and the WSN. The gateway has a radio module

of limited bandwidth, rendering it a weak link even when the

controller has enough resources to overcome an attack.

For the reasons outlined above, most of the security mecha-

nisms designed for standard SDN networks have to be adapted

or redesigned. This is one of the major challenges for SDWSN

security.

B. Impact of DDoS Attacks on Network Performance

Based on SDWSN specific security vulnerabilities, in a

previous work, we studied the impact of three DDoS attacks

on SDWSN performance [14]. The attacks investigated were:

false flow request (FFR), false data flow forwarding (FDFF),

and false neighbor information (FNI).

The FFR attack aimed at increasing the SDWSN con-

troller’s processing overhead, as well as the packets’ traffic,

thus, increasing the number of collisions. Each attacker sent

multiple flow rule requests to the controller, while the latter

calculated the rule and replied to the request. The impact of

the attack was observed to be negligible. The FDFF attack

followed the FFR attack main idea of sending false flow rule

requests to the controller, however, the execution was based on

using each attacker’s neighbors (benign nodes). Each attacker

sent one data packet to its neighbors tagged with an unknown

flow identifier; as the neighbors did not have a rule to apply

to the packet, they sent a flow request to the controller asking

a rule for the unknown flow identifier. Thus, compared to the

FFR, the intensity of the attack was multiplied by the number

of neighbors. The FDFF attack tripled the number of control

packets in the whole network, but had a minor impact on the

delivery rate. For both control and data packets, the delivery

rate decreased only between 2% and 4%.

In the FNI attack, each attacker intercepted packets contain-

ing neighbor information, modified them with false neighbor

information and forwarded them to the controller. The con-

troller updated the network topology graph using the false

information, and then reconfigured the network with wrong

forwarding rules. Our main results [14] showed that the FNI

attack could double the number of control packets in the whole

network and had a significant impact on the delivery rate. In

the case of the control packets, the delivery rate decreased

between 35% and 50%. In the case of the data packets, the

delivery rate decreased between 20% and 70%.

III. CHANGE POINT DETECTION ALGORITHM FOR DDOS

The study in [14] provided valuable insight regarding the

impact of the FDFF and FNI DDoS attacks on the two metrics

under observation, i.e., the mean data packet delivery rate and

the mean control packets overhead. Building on this analysis,

we formulate the attack detection problem as a hypothesis

test, examining whether a change has occurred in the mean

value of the time series of the metrics involved.

In [9] a change point (CP) detection algorithm was pro-

posed to estimate in real-time the existence, the number, the

magnitude and the direction of changes in a time series. To

attain these objectives, the algorithm combined (i) off-line and

on-line CP schemes; (ii) an improved measurements window

segmentation heuristic for the detection of multiple CPs; and

(iii) a variation of the moving average convergence divergence

(MACD) indicator to detect the direction of changes. The

main elements of the algorithm are explained in the following.

A. Basic Off-line Approach

The proposed algorithm tests the constancy of the mean

values of the time series through a hypothesis test; the null

hypothesis is defined as H0 : µ1 = · · · = µN against the

alternative H1 : µ1 = · · · = µk 6= µk+1 = · · · = µN

indicating a change point (CP) at instance k ∈ {1, N}, where

N denotes the length the time series and µi the mean value

of the time series up to instance i.
Assuming that each sample of the time series X1, ..., XN

can be written as, Xn = µn + Yn, 1 6 n 6 N , a non-

parametric CUSUM test statistic can be developed to identify

changes in µ [15]; the test statistic can be viewed as a max-

type procedure,

M = max
16n6N

CT
n Ω̂

−1
N Cn, (1)

where the parameter Cn is the typical CUSUM,

Cn =
1√
N

(
n∑

i=1

Xi −
n

N

N∑

i=1

Xi

)
, (2)



and Ω̂N is the estimator of the asymptotic covariance Ω, where

Ω =
∞∑

s=−∞

Cov (XnXn−s). (3)

To estimate Ω, the Bartlett estimator was employed [9].

Finally, the critical values for several significance levels α
were computed using Monte Carlo simulations. The last step

is to estimate, if H0 fails, the unknown CP, under H1, given

by:

ĉp =
1

N
argmax
16n6N

M. (4)

B. On-line Phase

The on-line scheme includes an on-line CUSUM algorithm

for the detection of a change in the mean and a MACD indi-

cator to estimate the direction of a change; Xn is expressed

as 5

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(5)

where µ, M ∈ R, represent the mean parameters before

and after the unknown time of possible change k∗ ∈ N
∗

respectively. The term m denotes the length of an initial

training period during which there is no change in the mean

(µ1 = · · · = µm). In the form of a statistical hypothesis test,

the on-line problem is posed as,

H0 : I = 0

H1 : I 6= 0.
(6)

The on-line detection belongs to the category of stopping time

procedures, in which for a chosen detector TS(m, k) and a

given threshold F (m, k) we define the stopping time as:

τ(m) =

{
min{k ∈ N : |TS(m, k)|> F (m, k)}
∞, otherwise

. (7)

It is necessary to have limm→∞ P{τm < ∞|H0} = a, en-

suring that the probability of false alarm is asymptotically

bounded by α ∈ (0, 1), and, limm→∞ P{τm < ∞|H1} = 1,

ensuring that under H1 the asymptotic power is unity. Fulfill-

ing these condition, the threshold F (m, k) was defined as,

F (m, k) = cagγ(m, k), (8)

where the critical value ca is determined from the asymptotic

distribution of the detector under H0 and the asymptotic

behavior achieved by letting m → ∞. The weight function,

gγ(m, k) =
√
m

(
1 +

k

m

)(
k

k +m

)γ

(9)

depends on the sensitivity parameter γ ∈ [0, 1/2). The on-line

phase use the standard CUSUM detector, given by:

Γ(m, k) =
1

ω̂m

(
m+k∑

i=m+1

Xi −
k

m

m∑

i=1

Xi

)
(10)

where ω̂m denotes the asymptotic variance, that captures the

serial dependence between observations.

The corresponding threshold is FΓ(m, k) = cΓagγ(m, k)
and the critical value is defined as:

lim
m→∞

P{τm < ∞} = lim
m→∞

P

{
1

ω̂m

sup
16k6∞

|Γ(m, k)|
gγ(m, k)

> cΓa

}

=

{
sup

t∈[0,1]

W (t)

tγ
> cΓa

}
= α. (11)

The direction of change is estimated applying the MACD

indicator. This indicator is based on an exponential moving

average (EMA) filter. More details about this indicator can be

found in previous works [9] [10].

C. Overall algorithm

Summarizing, the overall algorithm has 5 main steps:

• Step 1: define a finite monitoring window k > 0 from a

starting time instance ms,

• Step 2: apply the off-line algorithm for the whole histor-

ical period h = {1, . . . ,ms}. If no changes are detected,

set m = h, conversely, the training sample becomes

m = {cplast, . . . ,ms}, where cplast is the last off-line

CP detected.

• Step 3: apply the on-line procedure TS(m, k) on the

interval ms,ms + k. If an on-line CP (ĉp∗) is detected,

the on-line process stops. Conversely, ĉp∗ = 0, the

monitoring ends and proceeds to Step 5.

• Step 4: define kcp = ĉp∗ as a CP and apply the trend

indicator. If TI(kcp > 0), announce an upward change.

Conversely, announce a downward change.

• Step 5: Set a new starting point for the monitoring period.

If kcp > 0, set ms = kcp + d where d is a constant

value defining a period assuming no change, else, set

ms = mh.

IV. METHODS

We employed the CP algorithm in [9] in SDWSNs under

FDFF and FNI attacks. We simulated grid topologies with 36

and 100 nodes, varying the number of attackers in the network

(5% and 20%). Each simulation runs during 10 hours and each

scenario was replicated 30 times. During the first 8 hours the

network operated normally, then the attack is triggered. The

choice of 8 hours was made because empirically it was seen

that we needed at least 250 samples for the training period

and we obtained one sample every 2 minutes. The simulations

were performed using the COOJA simulator [16] and sky

motes. The MAC layer was the IEEE 802.15.4, configured

to work without radio duty cycle (nullrdc_driver). The

data sink received the application data, while the management

sink received performance metrics information. Notice that

the SDN controller is a different node from the sink. Table I

depicts the simulation parameters.

We analyzed the data packets delivery rate and the control

packets overhead. The delivery rate was calculated by dividing

the total number of packets successfully received by the total

number of packets sent. The control packets overhead was

quantified as the total amount of control packets sent. Those

metrics were updated every two minutes.



TABLE I
SIMULATION PARAMETERS

Simulation parameters

Topology Square grid

Number of nodes 36 and 100

Simulation duration 36000 s

Node boot interval [0, 1] s

Number of sinks 2

Sinks position Middle of the grid edge

Data traffic rate 1 packet every 30 seconds

Management traffic rate 1 packet every two minutes

Data payload size 10 bytes

Management payload size 10 bytes

Data traffic start time [2, 3] min

Radio module power 0 dB

Distance between neighbors 50 m

Attacks begins after 28800 s

IT-SDN parameters

Controller position center

ND protocol Collect-based

Link metric ETX

CD protocol none

Flow setup source routed

Route calculation algorithm Dijkstra

Route recalculation threshold 10%

Flow setup types regular or source routed

Flow table size 10 entries

The metrics measuring the performance of the intrusion de-

tection algorithm are: i) detection rate (DR); ii) false positive

rate (FPR); iii) false negative rate (FPR); iv) detection time

median (DTM), indicating the median of the time instances

elapsed from the launch of the attack to the instance it was

identified; and v) median absolute deviation (MAD). The

detection rate is the ratio between the correctly detected

attacks and the total number of attacks. The false positive rate

is the ratio between the number of attack events classified as

attack and the total number of attack events. The false negative

rate is the ratio between attack events classified as non-attack

event and the number of attack events. The detection time

median is the median of the number of samples required to

detect the attack. The median absolute deviation measures the

variability of the detection times and is calculated as shown

in (12), where Xi is the detection time for replication i, and

X̃ is the median of all the detection times,

MAD = median(|Xi − X̃|) (12)

The delivery rate and control overhead time series were ana-

lyzed for three monitoring windows and three critical values.

We used monitoring periods K ∈ {50, 100, 150} samples.

This means that the test statistic is run over K samples to

extract changes in the mean value. As critical values we used

α ∈ {90%, 95%, 99%}. Finally, in this analysis, we discarded

the first 15 samples because during this time the network is

bootstrapping.

V. RESULTS AND ANALYSIS

In this Section we present and analyze the simulation

results. In Section V-A we compare the FDFF attack detection

performance when monitoring the data packets delivery rate

and the control overhead. In Section V-B we repeat this

analysis for the FNI attack.

A. FDFF attack detection

Tables II and III summarize the FDFF attack detection

results when 5% of nodes are attackers. The results show

that when monitoring the data packets delivery rate, the DR

is between 57% and 73% for 36 nodes, and between 60% and

83% for 100 nodes. The results when monitoring the control

packets overhead show two main points: (i) the algorithm

has the same detection performance if configured with a

monitoring period K of 50 or 150 samples, and (ii) when

the monitoring period is configured as K = 100 samples we

obtained a DR between 97% and 100%.

Comparing the FPR and the FNR metrics, we observe that

the number of cases classified as false negative is higher

than the number of cases classified as false positive. This

means, it is more common for the algorithm not to detect a

change in the metrics when the network is under attack than to

detect a suspicious change in a network without attackers. For

example, looking at the results when monitoring the control

overhead in Table II, only in one out of nine cases the FPR

was different than zero. Conversely, the FNR was different

than zero in six of nine cases.

The DTM (detection time median) results show that when

monitoring the control packets overhead, the attack detection

is faster than when monitoring the delivery rate in all the

cases. When monitoring the data packets delivery rate, the

DTM is between 31 and 37 samples for 36 nodes, and between

20 and 31 samples for 100 nodes. When monitoring the

control packets overhead, the DTM is between 9 and 19

samples for 36 nodes, and between 10 and 19 samples for

100 nodes. The fastest detection is obtained monitoring the

control packets overhead using a monitoring period of 100

samples, highlighted in red color.

Tables IV and V summarize the FDFF attack detection

results when 20% of nodes are attackers. In the case of 36

nodes, the DR is between 73% and 83% when monitoring the

data packets delivery rate, and between 87% and 100% when

monitoring the control packets overhead. In terms of detection

time, the best DTM when monitoring the data packets delivery

rate was 24 samples and the DTM when monitoring the

control packets overhead was 5 samples. Configuring the

monitoring period in 100 we obtain the best DTM, but there



TABLE II
FDFF ATTACK DETECTION, 36 NODES, 5% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 31 33 31 31 37 33 31 31 31

MAD 4 6 4 8 9 10 4 4 4

DR 63 67 67 57 70 63 67 73 70

FPR 7 10 7 0 0 0 0 0 0

FNR 30 23 27 43 30 37 33 27 30

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 19 16 18 12 9 11 19 16 18

MAD 3 3 3 3 2 2 3 3 3

DR 67 73 67 100 97 100 67 73 67

FPR 0 0 0 0 3 0 0 0 0

FNR 33 27 33 0 0 0 33 27 33

TABLE III
FDFF ATTACK DETECTION, 100 NODES, 5% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 24 26 27 22 20 21 29 31 31

MAD 7 6 13 9 10 11 13 9 15

DR 60 67 67 77 83 73 63 67 63

FPR 23 20 20 10 7 13 0 3 7

FNR 17 13 13 13 1 13 37 30 30

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 19 17 19 13 10 12 19 17 19

MAD 3 3 3 3 2 3 3 3 3

DR 60 73 63 100 100 100 60 73 63

FPR 0 0 0 0 0 0 0 0 0

FNR 40 27 37 0 0 0 40 27 37

is a drop in the DR if compared with the cases when using

monitoring periods of 50 and 150 samples.

The results for 100 nodes show it is possible to obtain a

DR of 100% monitoring any of the metrics, but there are

significant differences in the detection time. The DTM when

monitoring the control overhead is between 3 and 4 samples,

while when monitoring the data packets delivery rate the

DTM is between 7 and 15 samples. Considering the earliest

detection with the highest DR for both monitoring metrics, it

occurs when using a monitoring period of 100 samples. For

both cases the DR obtained was 97%. In terms of FPR and

FNR, the best performance was obtained when monitoring the

control overhead and using a monitoring period of 50 and 150

samples. Monitoring the control overhead using a monitoring

window of 100 samples provides a FPR between 3% and 10%.

TABLE IV
FDFF ATTACK DETECTION, 36 NODES, 20% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 28 28 28 30 24 28 29 28 28

MAD 5 8 6 11 7 8 6 5 8

DR 77 80 73 73 83 73 77 80 77

FPR 3 07 7 0 3 0 0 3 0

FNR 20 13 20 27 13 27 23 17 23

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

M 8 7 7 5 5 5 8 7 7

MAD 2 2 2 1 1 1 2 2 2

DR 100 100 100 97 87 97 100 100 100

FPR 0 0 0 3 13 3 0 0 0

FNR 0 0 0 0 0 0 0 0 0

Summarizing, the algorithm is able to detect the FDFF

attack using either the data packet packets delivery rate or

the control packets overhead as inputs. Notably, the algorithm

obtaines a DR of 100% with both metrics when 20% of

nodes behave as attackers. However, aiming for the quickest

detection captured through the detection time median, the

algorithm achieved far better results when monitoring the

control packets overhead in all scenarios. This is a direct

consequence of the type of the attack; the attacker creates

multiple flow rule request packets to increase the packet traffic

and the controller processing overhead. After some time, the

flow table of the nodes around the attacker start to saturate,

affecting the data packets delivery rate. This means that the

change in the delivery will be detected only after the tables

saturation; on the contrary, the number of control packets start

to change immediately after the attack is triggered.

B. FNI attack detection

Tables VI and VII summarize the FNI attack detection

results when 5% of nodes are attackers. Opposite to the FDFF

attack results, the algorithm obtained a better performance

detecting the FNI attack when monitoring the data packets

delivery rate. In the case of 36 nodes, the DR when monitoring

the data packets delivery rate is between 80% and 93%, and

the DR when monitoring the control packets overhead is

between 23% and 33%. In the case of 100 nodes, the DR when

monitoring the data packets delivery rate is between 83%

and 93%, and the DR when monitoring the control packets

overhead is between 30% and 70%. This means, even the best

DR when monitoring the control packets overhead is under

the worse DR when monitoring the data packets delivery rate.

Also, the results show that using a critical value of 90%,

we can obtain a negligible FPR (in our simulation calculated

zero). With respect to the DTM, the best result was obtained

by monitoring the data packets delivery rate and the control



TABLE V
FDFF ATTACK DETECTION, 100 NODES, 20% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 15 13 14 8 7 7 15 14 14

MAD 5 6 5 6 5 5 5 5 5

DR 100 93 100 97 93 97 100 97 97

FPR 0 7 0 3 7 3 0 3 3

FNR 0 0 0 0 0 0 0 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 4 4 4 3 3 3 4 4 4

MAD 0 0 0 0 0 0 0 0 0

DR 100 97 100 97 90 97 100 97 100

FPR 0 3 0 3 10 3 0 3 0

FNR 0 0 0 0 0 0 0 0 0

TABLE VI
FNI ATTACK DETECTION, 36 NODES, 5% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 7 6 7 8 7 6 7 6 6

MAD 3 4 3 4 3 3 2 4 4

DR 93 83 93 93 80 93 93 83 87

FPR 0 10 0 0 13 0 0 10 7

FNR 7 7 7 7 7 7 7 7 6

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 28 25 27 35 26 33 28 25 27

MAD 6 7 9 4 3 5 6 7 9

DR 27 33 27 20 27 23 27 33 27

FPR 3 3 3 0 0 0 0 0 0

FNR 70 63 70 80 73 77 73 67 73

packets overhead were 6 and 25 samples, respectively. This

means the algorithm detects the attack four times faster when

monitoring the data packets delivery rate. For 100 nodes, the

best DTM when monitoring the data packets delivery rate

remains in 6 samples, but when monitoring the control packets

overhead it is 29 samples.

Lastly, Tables VIII and IX summarize the FNI attack

detection results when 20% of nodes are attackers. For 36

nodes, the results remain similar to the case of 5% of nodes are

attackers. In the case of 100 nodes, the DR when monitoring

the data packets delivery rate is between 97% and 100%, and

the DR when monitoring the control packets delivery rate is

between 93% and 97%. About the DTM, the results for the

scenarios when monitoring the data packets delivery rate are

between 4 and 9 samples. The results for this same metric

TABLE VII
FNI ATTACK DETECTION, 100 NODES, 5% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 6 6 6 6 6 6 6 6 6

MAD 4 4 3 3 3 2 4 4 4

DR 87 93 83 83 83 83 83 90 87

FPR 13 7 17 17 17 17 13 10 13

FNR 0 0 0 0 0 0 3 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 34 29 33 35 37 37 34 29 33

MAD 7 7 7 10 7 8 7 8 8

DR 63 70 67 30 47 37 63 70 67

FPR 0 0 0 0 0 0 0 0 0

FNR 37 30 33 70 53 63 37 30 33

when monitoring the control packets overhead are between

24 and 26 samples. This means, for grid topologies with 100

nodes where 20% of nodes are attackers, we obtain similar

DRs regardless of the monitoring metric, but when monitoring

the delivery rate the detection is at least 3 times faster.

Summarizing our findings, the algorithm is able to detect

the FNI attack monitoring either the data packet packets

delivery rate or the control packets overhead. Then, comparing

the detection performance based on the detection rate and

the detection time median, the algorithm obtained a far better

performance when monitoring the data packets delivery rate

in all scenarios. This effect is directly related to the type of

the attack; in the FNI attack, the attackers intercept the control

packets that contain neighbor information, modify them, and

then forward them to the controller. This means this attack can

lead to a network misconfiguration using few control packets.

VI. CONCLUSIONS AND FUTURE WORK

SDWSNs are exposed to new security threats that may not

affect traditional WSNs. Recent proposals in the literature for

the identification of DDoS attacks in SDWSN do not always

consider “restricted” networks and there is also the need to

improve the solutions’ performance. In this work we provide

a solution for DDoS attack detection for SDWSN. We identify

an attack by monitoring changes in the mean values of two

metrics, the network data packets delivery rate and the control

packets overhead. To detect a change in either metric due to

a DDoS attack, we use state-of-the-art non-parametric and

on-line change point detection algorithms [9]. We performed

experiments for two SDWSN DDoS attacks, in topologies of

36 and 100 nodes, and with varying number of attackers. The

attacks implemented were the FDFF and the FNI.

Our results showed that it is feasible to detect those

attacks by monitoring either the data packets delivery rate

or control packets metrics. However, targeting the quickest



TABLE VIII
FNI ATTACK DETECTION, 36 NODES, 20% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 7 7 7 7 7 7 8 7 7

MAD 2 2 2 3 4 3 2 2 2

DR 100 100 100 100 100 100 100 100 100

FPR 0 0 0 0 0 0 0 0 0

FNR 0 0 0 0 0 0 0 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 26 24 26 26 24 27 26 24 26

MAD 8 7 7 17 11 13 8 7 7

DR 57 70 60 43 63 57 57 70 60

FPR 0 0 0 0 0 0 0 0 0

FNR 43 30 40 57 37 43 43 30 40

TABLE IX
FNI ATTACK DETECTION, 100 NODES, 20% ATTACKERS

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 9 10 10 8 9 8 10 12 11

MAD 5 8 7 4 6 4 5 9 8

DR 100 100 100 100 100 100 100 100 97

FPR 0 0 0 0 0 0 0 0 3

FNR 0 0 0 0 0 0 0 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 27 24 26 26 25 25 27 24 26

MAD 6 3 6 6 6 6 6 3 6

DR 93 97 97 93 97 93 93 97 97

FPR 0 0 0 0 0 0 0 0 0

FNR 7 3 3 7 3 7 7 3 3

detection possible, far superior detection performance was

achieved for the FDFF when monitoring the control packets

overhead. Conversely, results showed a far better performance

in detecting the FNI attack when monitoring the data packets

delivery rate. In either cases, the detection rate increased to

even 100% with increasing attack intensity, while the agility of

the detection is noteworthy, with either attack identified within

3−10 samples from its launch. Notably, different metrics have

been shown to be better indicators for different types of attack,

allowing to detect not only the existence, but, potentially the

type of the attack.

As the detector’s algorithmic complexity is linear to the

size of the network and the number of metrics monitored,

the proposed approach could scale to include other metrics.

In future work, we will test the algorithm monitoring the

change of other network metrics to see if we can improve the

detection performance. We would like to test the algorithm

analyzing the metrics by regions or clusters to obtain more

information about the attacker location. Also, we will repeat

the experiments reducing the simulator Tx/Rx success ratio.
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