
Software Defined Topology Control Strategies
for the Internet of Things

Tryfon Theodorou and Lefteris Mamatas

Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece

Email: tryfonthe@uom.edu.gr, emamatas@uom.edu.gr

Abstract— Topology control is a crucial process for an efficient
operation of a Wireless Sensor Network (WSN). The usage of
WSNs in the Internet of Things (IoT) emerges new research
challenges and novel applications. Recent WSNs proposals
enhanced with Software Defined Networking (SDN) practices
introduce new innovative network control strategies and protocols
based on central control logic. This paper introduces two novel
topology control techniques for Software Defined WSNs that can
be combined and adapted to the context environment. In this
direction, we propose CORAL-SDN, an SDN framework for
WSNs that enables dynamic deployment and configuration of
multivariate topology control mechanisms. We evaluate such
topology control strategies using our own novel SDN
experimentation facility for IoT. The results demonstrate
significant improvements on WSNs management, control features
and performance in terms of topology construction time and
reduced topology maintenance overhead.

Keywords— Topology control; Software Defined Wireless
Sensor Networks

I. INTRODUCTION
WSNs consisting of tens or hundreds of wireless sensor

nodes, called motes, are mainly used to measure and monitor
real world phenomena of interest, in high precision and large
scale. They are used in a wide range of applications such as
tracking, surveillance, disaster detection, environmental
monitoring, healthcare and agriculture. Their main
characteristics are the limited computational processing power
and memory, low power operation and resources, limited
bandwidth, and low quality radio communication [1].

WSNs today are becoming a key-enabling technology for the
Internet of Things (IoT) [2], introducing a new range of WSN
applications integrated to the traditional Internet infrastructure.
The transition of WSNs to the new era of IoT, introduces new
challenges and imposes the exploration of novel ideas in terms
of new applications. Major relevant issues are interoperability,
heterogeneity, quality of service, and security.

An approach that targets the above challenges exploits new
flexible network architectures, such as the Software-Defined
Networking (SDN) which uses logically centralized software,
hosted in nodes called SDN controllers, to control the behavior
of a network by reducing the network configuration and
management complexity. SDN was originally implemented for
wired networks operating in cloud data centers. Recent research
endeavors [3] are blending SDN and SDN-like architectures
with WSNs technologies forming a new approach for SDNs
called software-defined wireless sensor networks (SDWSNs).

The SDWSN paradigm brings new ways in the WSNs control,
management and operation. For the time being, the research
community is mainly concentrating on SDN routing and data
flow control. In this paper, we argue that a centralized SDN
approach can improve WSNs aspects beyond routing and flow
manipulation, for example the topology control.

Topology Control is one of the most important and critical
procedures used in the operation of WSNs [4]. The goal of
topology control is the formulation of a graph representing an
abstract view of the network nodes, and their communication
links. This abstract representation is mainly used in routing
decisions aiming for fewer bottlenecks, reduction of traffic, low
latency and efficient energy consumption.

 Although topology control has received a lot of attention in
the WSNs community where a number of solutions have been
implemented [5], the major changes towards IoT and network
softwarization that WSNs are going through, compels to further
investigation. An example is the efficient integration of Internet
protocols under the SDN paradigm, in regard to low energy and
lossy WSNs environment. Here, we study topology control
solutions that can be applied in the new software defined
manifestation of WSNs. In our understanding, this is the only
paper that targets in depth the study of topology control in
SDWSNs.

Our investigation is conducted and evaluated using our own
SDWSN framework, the CORAL-SDN, which enables dynamic
deployment and configuration of multivariate topology control
mechanisms. In our experiments, we used our SDN
experimentation infrastructure which is a general facility for
evaluating network control and protocol mechanisms for the IoT
[6]. In this paper, we propose and evaluate experimentally two
novel topology control techniques that can be combined and
adjusted on-demand. Our main research goal is to improve
WSNs management, control, and operation, through advanced
topology construction algorithms that follow the SDN paradigm
and achieve reduced time and control overhead.

The paper is organized as follows: Section II provides
background information for topology control on WSNs, SDNs
and SDWSNs. In section III, we present our novel topology
control strategies for SDWSNs. Our testing environment for
experimenting with alternative topology control techniques,
namely the CORAL-SDN, is described in section IV. Section V
presents our experimental evaluation results and Section VI
summarizes the main outcomes and outlines future research
directions.

II. RELATED WORK
The topology control algorithms in traditional WSNs can be

classified based on [4] as: (a) homogeneous algorithms that
assume a simplistic approach where the nodes are using the
same transmitting range; and (b) non-homogeneous algorithms
where the network nodes are capable of different transmitting
ranges. The latter approaches, depending on the information
used in topology construction, can be subcategorized into the
following distributed topology control protocols: (a) location
based, like R&M and LMST [7], where node positions are
known and can be used in a centralized manner; (b) direction
based, like CBTC [8] and RHG [9], where nodes do not know
their position, but they can estimate the relative direction of their
neighbors; and (c) neighbor based, like KNeigh [10], and XTC
[11], where nodes are aware only of the address IDs of their
neighbors and some criteria like the link quality or distance.

RPL [12], the dominant distance vector protocol for WSNs,
specifies the construction of a Destination Oriented Directed
Acyclic Graph (DODAG), using an objective function and a set
of metrics/constrains. RPL builds a logical routing topology
graph as an abstraction of the actual network. The network
administrator(s) can decide to activate multiple versions of it by
using different criteria for each graph, e.g., power consumption
or link quality.

Regarding the typical SDN proposals, topology discovery is
a critical service provided at the controller layer. The de-facto
OpenFlow Topology Discovery Protocol (OFDP) adapts the
Link Layer Discovery Protocol (LLDP) with certain
modifications, but performs topology discovery in fixed SDN
environments mainly [13]. Recent research in OpenFlow
topology control like [14], investigates OFDP and suggests new
improved topology discovery approaches, that reduce
significantly the amount of control messages for infrastructure
SDNs. Moreover, the Open Networking Foundation Wireless
and Mobile workgroup [15] currently determines architectural
requirements and suggests extensions in the OpenFlow protocol
for wireless and mobile domains, e.g., LTE and Wi-Fi. Here, we
investigate SDN strategies for topology control that are not
constrained by the OpenFlow protocol, but they can be
integrated in its future evolution.

In the research front of the SDWSN approaches, authors in
[16] suggest a theoretical OpenFlow based protocol for WSNs,
addressing key technical challenges for Software-Defined WSN
architectures. The application of SDN-inspired techniques in
WSNs is described in [17], [18], while highlighting a number of
flexibility and efficiency advantages but also challenges that
should be addressed like the increase of control message
overhead and energy efficiency. To overcome these challenges,
recent proposals are using stateful routing tables and proactive
routing decisions to reduce interactions with the controllers, and
improve the flow-control decisions, such as the SDN-WISE
[19]. In the above solutions, the topology control process is
initiated by the controller in a procedure where the sink node
advertises its existence to the neighbor nodes which, in turn, are
initiating a flood of control messages to discover the rest of the
nodes. In TinySDN [20] and Spotled [21], each node
recognizing its neighboring nodes, transmits a set of topological
information to the controller which constructs the topology.

All the previously referenced SDWNSs proposals are using
topology control techniques similar to the ones used in

traditional WSNs, i.e., there is a main focus on the routing
algorithms and their associated overhead. Furthermore, the SDN
approaches are currently focusing on infrastructure networks
and only recently in mobile networks. In this paper, we support
the idea of a thorough investigation in topology control bespoke
to software defined WSN proposals in order to exploit the
advantages of SDNs, while tackling the challenges of the WSN
environment, e.g., limited resources and low quality of wireless
medium. Indicatively, an SDN controller can adapt the topology
discovery process to the context environment. In the next
section, we discuss our approach to topology control, along
these lines.

III. TOPOLOGY CONTROL IN SDWSNS
Topology Control (TC) is divided into two core phases:

Topology Construction and Topology Maintenance:
The Topology Construction or Topology Discovery phase is

usually initiated when the network starts its operation. Its main
goal is to construct an abstract representation of the network
topology and nodes’ connectivity. Depending on the TC
protocol, the discovered information is stored either into each
one of the network nodes, in case of a distributed protocol, or,
into a central node, i.e., the sink, in case of a centralized
approach. Although topology construction is unavoidably a time
consuming process, there are occasions where its duration is
crucial, e.g., an emergency disaster scenario.

The Topology Maintenance phase is the recurring process
that maintains the integrity of network connectivity during
network operation. The main task is to update the abstract
network connectivity structure. A high rate of topology
maintenance execution requests, increases the amount of
network control messages and subsequently increases the
network’s Control Overhead (1).

 Control Overhead = Control Packets / Total Packets (1)

The network TC has a main objective: using low control
overhead to provide the routing protocol algorithms with
adequate information in order to achieve efficient message
delivery, higher throughput, lower traffic, less bottlenecks and
optimal use of energy.

In this paper, we introduce two new TC algorithms for
SDWSNs. Their task is to feed the global controller with
sufficient information to enable it to create the topology graph.
This graph composes a global representation of the WSN and is
used from the global controller to make efficient decisions on
the data flow establishments. The global controller is capable of
using each algorithm separately or in combination in order to
achieve the best possible outcome.

We adapt a typical IoT network scenario consisting of a
global controller operating on a desktop computer connected to
the infrastructure network, and a set of static or mobile motes
placed in various physical topologies.

In the following two subsections we describe in detail the
two TC algorithms.

A. Topology control algorithm based on node advertisement
 The first TC algorithm, based on node advertisement, is
called TC-NA and described by the sequence diagram in Fig. 1.
The controller initiates the topology discovery process by
sending a topology discovery control packet to the first node.

 As described in Algorithm 1, when a node receives a control
message from the controller, the latter is transmitting a broadcast
beacon message advertising its location to the neighboring
nodes. This control message includes various information
related to the sender like the node id.

Algorithm 1 - TC based on node advertisement (TC-NA)
1: for all received packets pkt do
2: if received pkt = advertisement broadcast from node then
3: prepare replay.pkt add nodeid, received.pkt.nodeId,
 link quality, signal strength, battery energy
4: send replay.pkt to the controller
5: end if
6: if received pkt = advertisement pkt from controller then
7: send broadcast pkt to your neighbors
8: end if
9: end for

 The receiving node estimates data related to the signal
strength, the link quality for the received message, and
formulates a message with this information, adding also
information related to its identification and its operational status,
e.g., its battery power. This message is then transmitted back to
the controller. When the controller receives a topology response
message, it updates the network topology graph. Each node
participates in the process, so consequently, the network floods
from end to end.

B. Topology control algorithm based on neighbor request
 We carry on with the second topology control algorithm that
is based on neighbor request. The algorithm is called TC-NR
and it is described by the sequence diagram in Fig. 2. The
controller initiates the topology discovery process by sending a
control message to the first node attached.

 As described in Algorithm 2, when a node receives a control
message from the controller, it is broadcasting a beacon message
to all neighbor nodes in range. Each node that receives that
broadcast message, responds to the sender with a unicast packet
providing information regarding the communication link quality
and address id. The receiver collects the respond messages from
the neighbor nodes and informs the controller. The controller

subsequently updates the network topology graph.

Algorithm 2 - TC based on neighbor node request (TC-NR)
1: for all received packets pkt do
2: if received pkt = broadcast neighbor request then
3: prepare replay.pkt add nodeid, link quality
 and signal strength
4: send unicast replay.pkt to the sender node
5: end if
6: if received pkt = pkt from controller then
7: send broadcast pkt to your neighbors
8: end if
9: if node receives unicast pkt replay then
10: prepare replay.pkt add nodeid, received.pkt.nodeId,
 link quality, signal strength, battery energy
11: send replay.pkt to the controller
12: end if
13: end for

C. Comparison and discussion
Prior to the quantitative evaluation in section V, we discuss

the main architectural benefits and drawbacks of the above two
algorithms. Initially, we have to acknowledge that both
algorithms succeed to implement the topology discovery
process. The TC-NA algorithm succeeds to collect the network
information in a passive mode by reporting to the controller
other nodes whenever these nodes advertise their existence. The
TC-NR succeeds to collect the network information in an active
mode, as each node requests an answer from its neighbors.

Comparing the amount of tasks each algorithm executes in
relation to packets sent, the TC-NR algorithm shows a higher
number of executed tasks. Consequently, we argue that the TC-
NR algorithm produces inferior time performance results
compared to the TC-NA, especially during the topology
construction phase.

Considering the topology maintenance phase, we can point
out that the TC-NA algorithm has to be executed exhaustively
for all nodes in order to collect all possible neighbors. On the
contrary, the TC-NR can acquire the neighbors of a node by
directly requesting the node itself. This difference can be
valuable in certain cases: e.g., in a heterogeneous network with
mobile and static nodes, the TC-NR can execute topology
requests on specific nodes or parts of the network, as many times
as needed, without overloading the rest of the network with
unnecessary topology control packets.

D. Proposed improvements
Based on the above discussion, we can easily conclude that

depending on the network scenario (e.g., the network topology
or application), the two algorithms have such strong and weak
points. We suggest that a WSN should support both the TC-NA
and TC-NR algorithms, and dynamically apply and configure
each one on the right occasion. Using the software defined
control paradigm over a WSN, provides a solution to the
problem of coexisting algorithms. SDWSN centralized
intelligence can handle complicated decisions utilizing the
global network view and applying different solutions depending
on the network context.

In the next section, we present our integrated SDWSN
framework that is allowing us to experiment with alternative
protocol strategies in various network scenarios.

Fig. 1. The TC-NA algorithm

Fig. 2. The TC-NR algorithm

IV. THE CORAL-SDN ARCHITECTURE
To experiment with the above algorithms, we implemented

an innovative testing framework named CORAL-SDN. The
CORAL-SDN enables elastic network operation through
offloading complexity from the network protocols to the
controller plane deployed at the surrounding fixed
infrastructure. It supports deployment and dynamic
configuration of alternative end-to-end topology control
algorithms for IoT devices operating in heterogeneous
environments, using centralized network control that exploits
the global picture of the network. The facility is capable of
taking into account fundamental characteristics of wireless
networks, such as signal issues and intermittent connectivity.
The CORAL-SDN establishes an ideal testing environment
facilitating experimentation with software defined strategies and
solutions for WSNs.

The CORAL-SDN framework, as part of the second
WiSHFUL (http://wishful-project.eu) Competitive Call for
Experiments, has been integrated with the WiSHFUL platform
(https://github.com/wishfulproject) [22] and is capable of
conducting experiments using the IMEC w-iLab.2 test-bed or
the Cooja emulator. CORAL-SDN architecturally is organized
in two subsystems: the CORAL controller and the WiSHFUL
project infrastructure. Fig. 3 depicts the CORAL architecture
and the interfaces between the different components.

 The CORAL Controller module, acting likewise an SDN
controller, is responsible for the centralized management of the
network flow control. The controller’s intelligence comes from
the Decision Making subsystem that specifies a set of rules and
thresholds, organized in algorithms (e.g. the TC-NA and TC-NR
algorithms). These algorithms implement different network
functions like topology control and routing. Based on modular
architecture, it easily adapts new algorithms that facilitate new
functionalities. Another essential module of the controller, the
Network Modeler, maintains an abstract view of the network
connectivity in a graph structure incorporating a variety of cross
layer data, including the signal strength and the link quality
estimation measurements collected from the network.

 On the northbound, the CORAL controller is connected with
the Dashboard (Fig. 4), which constitutes a highly flexible GUI
visualization tool based on the NODE-RED platform
(https://nodered.org). The interface visualizes the WSN
topology and presents various measurements provided by the
controller, while it also offers management functionalities and
configuration parameters to the user, such as the type of the
applied topology control algorithm.

On the southbound, the controller communicates with the
data plane through the WiSHFUL platform using the Universal
Programming Interfaces (UPIs), i.e., novel lower protocol stack
abstractions introduced from the WiSHFUL project. The control
messages formed in JSON objects received from the WiSHFUL
platform are propagated to the network nodes through a separate
control channel. Using the WiSHFUL platform provides to the
CORAL-SDN architecture heterogeneity on the data plane and
robust experimentation facilities fully aligned with the software
defined approach we are investigating.

CORAL-SDN is the extension of our framework presented
in [6] aiming the dynamic configuration of routing algorithms
through an SDN-inspired facility for the IoT.

V. EVALUATION

The main goal of this section is to highlight our experimental
results which compare the success rate and time needed for the
controller to construct the network topology in different physical
topology scenarios. Our evaluation focus on the topology
discovery process rather than on the topology maintenance,
because the topology control aspect is complex enough to
deserve independent study. The latter constitutes part of our next
research goals, integrating mobility issues as well. Thus, we
firstly elaborate on our experimental setup, and then we present
and discuss our results.

A. Experimental Setup
We implemented the SDWSN control plane of CORAL-

SDN and our topology control algorithms (i.e., imported as
controller modules) in Java. In the data plane, we implemented
a multi-hop forwarding network protocol for Contiki OS
(www.contiki-os.org) using the C programming language.

For our experimental evaluation, we used Cooja simulator
with emulated Zolertia Z1 IoT devices. Cooja is a Linux based

Fig. 3. CORAL-SDN Architecture

Fig. 4. The CORAL-SDN Graphical User Interface (Dashboard)

 (

cross-layer WSN simulator for Contiki OS, which enables the
creation of virtual WSN scenarios. The radio environment was
set to operate on channel 26 with channel check rate on 128 Hz.
The control message packet size was 60 bytes.

We conducted our experiments with WSNs consisting of 25
nodes. We considered six distinct typical physical topology
scenarios: Linear, Ring, Grid, Tree, Mesh dense, and Mesh
sparse. Each scenario reflects different behavior regarding the
network topology discovery. All experiments were conducted
10 times and the results demonstrated correspond to the mean
value. This number deemed appropriate for the statistical
accuracy of our analysis, i.e., produced a low standard deviation
of our measurements.

The practical experience gained from the experimentation
with our framework revealed a number of technical issues that
have to be considered in SDWSN topology discovery strategies
and are discussed in the paper. One of these issues was the
detection of a certain amount of collisions, when the algorithms
were initially flooding the network with topology control
messages. To overcome this problem, we introduced a
dynamically configured parameter in our algorithms specifying
the time nodes have to wait before transmitting control
messages. In order to evaluate the effect of this time interval, we
conducted our experiments using two different ranges of
randomly assigned values. The first one is in-between 1 to 3 sec,
and the latter is in-between 1 to 6 sec.

B. Experimental Results
In Fig. 5, we present the topology construction duration in

seconds, for each one of the experiments. We observe that linear
topology produces the highest values as expected, since it
investigates nodes one by one. On the contrary, the tree topology
demands the minimum time. The results show clearly that the
TD-NA algorithm is faster compared to the TD-NR. This
outcome justifies our comments in section III-C. Regarding the
time interval we conclude that an interval from 1 to 3 sec
produces better results than the one from 1 to 6 sec. Some
irregularities can be observed with the mesh high-density
algorithm, as this topology is demanding in terms of the number
of detected links, because of increased radio collisions.

In Fig. 6 to Fig. 9, we investigate the quality of the produced

result compared to the algorithm’s success rate. Fig. 6 shows that
the node discovery, in general, is successful since the success
rate is above 90% in all cases.

Fig. 7 depicts in detail the number of discovered nodes in

each case. The tree topology and in some cases the ring topology
scenario experienced some minor difficulties in recognizing the
network. This is mainly due to the big amount of control
messages exchanged in short interval.

In Fig. 8, the percentage of the successfully recognized

connectivity links between the nodes is presented. From this
chart we can conclude that link detection is even more
challenging, leaving space for improvement for both algorithms.
Although in most of the scenarios the unsuccessful link
discovery ratio was less than 10%.

Fig. 9 shows the number of the experimental runs where

successful detection for all network links is occurred. In some
topologies, like the grid and the mesh dense, we observed the
most challenging results, leaving space for improvement and
further investigation. We note that well-established WSN
algorithms (e.g., RPL) face similar issues as well. Our choice of
topologies stress-test the topology discovery.

Fig. 5. Topology discovery duration for 25 nodes

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00
110.00
120.00
130.00

Linear Ring Grid Tree Mesh high
density

Mesh low
density

se
c

Topology Discovery Time (25 nodes)

TC-NA (1-3sec) TC-NR (1-3sec) TC-NA (1-6sec) TC-NR (1-6sec)

Fig. 6. Node discovery rate for 25 nodes

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Linear Ring Grid Tree Mesh high
density

Mesh low
density

Nodes Discovery Rate

TC-NA (1-3sec) TC-NR (1-3sec) TC-NA (1-6sec) TC-NR (1-6sec)

Fig. 7. Node discovery successful attempts for 25 nodes

0

1

2

3

4

5

6

7

8

9

10

Linear Ring Grid Tree Mesh high
density

Mesh low
density

Ex
ec

ut
io

n
at

te
m

pt
s

Successful Node Discovery Attempts

TC-NA (1-3sec) TC-NR (1-3sec) TC-NA (1-6sec) TC-NR (1-6sec)

Fig. 8. Link discovery rate for 25 nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Linear Ring Grid Tree Mesh high
density

Mesh low
density

Links Discovery Rate

TC-NA (1-3sec) TC-NR (1-3sec) TC-NA (1-6sec) TC-NR (1-6sec)

Based on the evaluation outcome discussed above, the

proposed SDWSN topology control algorithms exhibited a
successful operation regarding the node discovery process and
performance, i.e., rates above 90% in the majority of the
topology cases. Moreover, the communication links discovery
was almost 100% successful in most cases. Only in two cases
the TD-NR was no able to detect all the communication links
due to the amount of control messages produced during the
discovery process. The aforementioned results highlight the
main outcome of this paper: switching between the proposed
topology control strategies based on information handled by the
software defined controller, i.e., the detected network
conditions, topology and application requirements, can improve
SDWSNs performance.

VI. CONCLUSIONS
In this paper, we addressed issues related to topology control

for SDWSNs. Topology control is a key factor in WSNs
responsible for the seamless, smooth and efficient operation of
the network. Our experimental results show that software
defined techniques can improve the topology control in WSNs,
while providing robust results. The proposed algorithms are
reducing the initial latency caused by the need of
communication with a controller, and subsequently improve the
time to establish data flows in the network, compensating even
the increased control traffic introduced by the SDN paradigm to
WSNs. As a future work, we are planning to include mobility
and heterogeneous environment scenarios, investigating in
depth topology maintenance issues as well. We also plan to
conduct experiments increasing the number of nodes in the
network in real testbeds, i.e., using both the WiSHFUL [22] and
MONROE [23], [24] novel experimentation platforms. Last but
not least, an important step forward is to introduce relevant
topology control strategies for the evolution of OpenFlow
beyond infrastructure networks.

ACKNOWLEDGMENT
This work is partially supported by the Horizon 2020

NECOS (grant agreement no. 777067) project and the open call
schemes of the WiSHFUL (grant agreement no. 645274) and
MONROE (grant agreement no. 644399) projects.

REFERENCES
[1] I. F. Akyildiz and M. C. Vuran, Wireless Sensor Networks. John Wiley &

Sons, 2010.

[2] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor
networks towards the Internet of Things: A survey,” in 19th Int. Conf. on
Software, Telecommun. and Comput. Networks (SoftCOM), 2011.

[3] I. T. Haque and N. Abu-Ghazaleh, “Wireless Software Defined
Networking: A Survey and Taxonomy,” IEEE Commun. Surv. Tutor., vol.
18, no. 4, pp. 2713–2737, 2016.

[4] P. Santi, “Topology Control in Wireless Ad Hoc and Sensor Networks,”
ACM Comput Surv, vol. 37, no. 2, pp. 164–194, Jun. 2005.

[5] M. Li, Z. Li, and A. V. Vasilakos, “A Survey on Topology Control in
Wireless Sensor Networks: Taxonomy, Comparative Study, and Open
Issues,” Proc. IEEE, vol. 101, no. 12, pp. 2538–2557, Dec. 2013.

[6] G. Violettas, T. Theodorou, S. Petridou, A. Tsioukas, and L. Mamatas,
“An Experimentation Facility Enabling Flexible Network Control for the
Internet of Things,” in Proc. of the IEEE Conf. on Comput. Commun.
(INFOCOM), Atlanta, 2017.

[7] X.-Y. Li, Y. Wang, and W.-Z. Song, “Applications of k-local MST for
topology control and broadcasting in wireless ad hoc networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 15, no. 12, pp. 1057–1069, Dec. 2004.

[8] Z. Huang, C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Topology
control for ad hoc networks with directional antennas,” in Proc. of the
11th Int. Conf. on Comput. Commun. and Networks, 2002, pp.16-21.

[9] S. A. Borbash and E. H. Jennings, “Distributed topology control
algorithm for multihop wireless networks,” in Proc. of the Int. Joint Conf.
on Neural Networks, 2002, vol. 1, pp. 355–360.

[10] D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “The k-Neighbors
Approach to Interference Bounded and Symmetric Topology Control in
Ad Hoc Networks,” IEEE Trans. Mob. Comput., vol. 5, no. 9, pp. 1267–
1282, 2006.

[11] R. Wattenhofer and A. Zollinger, “XTC: a practical topology control
algorithm for ad-hoc networks,” in Proc. of the 18th Int. Parallel and
Distributed Processing Symposium, 2004.

[12] J. Vasseur, N. Agarwal, J. Hui, Z. Shelby, P. Bertrand, and C. Chauvenet,
“RPL: The IP routing protocol designed for low power and lossy
networks,” Internet Protoc. Smart Objects IPSO Alliance, vol. 36, 2011.

[13] L. Ochoa Aday, C. Cervelló Pastor, and A. Fernández Fernández,
“Current Trends of Topology Discovery in OpenFlow-based Software
Defined Networks,” External research report, 2015.

[14] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology
discovery in OpenFlow-based Software Defined Networks,” Comput.
Commun., vol. 77, pp. 52–61, Mar. 2016.

[15] John Kaippallimalil, “Open Networking Foundation Wireless & Mobile
Working Group.” [Online]. Available: https://www.opennetworking.org/.

[16] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: Enabling
Software-Defined Wireless Sensor Networks,” IEEE Commun. Lett., vol.
16, no. 11, pp. 1896–1899, Nov. 2012.

[17] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network
management based on software-defined networking,” in 27th Biennial
Symp. on Commun. (QBSC), 2014, pp. 71–75.

[18] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
Defined Wireless Networks: Unbridling SDNs,” in European Workshop
on Software Defined Networking (EWSDN), 2012, pp. 1–6.

[19] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in 2015 IEEE Conf. on Comput. Commun.
(INFOCOM), 2015, pp. 513–521.

[20] B. Oliveira, C. Borges Margi, and L. Batista Gabriel, “TinySDN:
Enabling multiple controllers for software-defined wireless sensor
networks,” in 2014 IEEE Latin-America Conf. on Commun.
(LATINCOM), 2014, pp. 1–6.

[21] B. T. de Oliveira and C. B. Margi, “Distributed control plane architecture
for software-defined Wireless Sensor Networks,” in 2016 IEEE Int. Symp.
on Consumer Electronics (ISCE), 2016, pp. 85–86.

[22] C. Fortuna et al., “Wireless software and hardware platforms for flexible
and unified radio and network control,” in European Conf. on Networks
and Commun., 2015, pp. 712–717.

[23] Ö. Alay et al., “Measuring and assessing mobile broadband networks with
MONROE,” in 2016 IEEE 17th Int. Symp. on A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2016, pp. 1–3.

[24] Alay, Ozgu, et al. ”MONROE: Measuring mobile broadband networks in
Europe.” in Proc. of the IRTF & ISOC Workshop on Research and
Applications of Internet Measurements (RAIM). 2015.

Fig. 9. Link discovery successful attempts for 25 nodes

0

1

2

3

4

5

6

7

8

9

10

Linear Ring Grid Tree Mesh high
density

Mesh low
density

Ex
ec

ut
io

n
at

te
m

ps
Successful Link Discovery Attempts

TC-NA (1-3sec) TC-NR (1-3sec) TC-NA (1-6sec) TC-NR (1-6sec)

